Financial_Modeling_Midterm_13

2172 275 01015 03271 00003 face 02438 275 01292 03519

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 352.79 548810.12 275 INCOME 0 2000000 6000000 10000000 208974.62 824009.77 49689.659 306796.64 111152.59 275 EDUCATION 2 4 6 8 10 12 14 16 18 100.0% maximum 99.5% 97.5% 90.0% 75.0% quartile 50.0% median 25.0% quartile 10.0% 2.5% 0.5% 0.0% minimum 17 17 17 17 17 16 13 12 8.9 2.38 2 Mean Std Dev Std Err Mean Upper 95% Mean Lower 95% Mean N 14.523636 2.5492208 0.1537238 14.826266 14.221007 275 NUMHH Quantiles 1 2 3 4 5 6 7 8 9 10 100.0% maximum 99.5% 97.5% 90.0% 75.0% quartile 50.0% median 25.0% quartile 10.0% 2.5% 0.5% 0.0% minimum Summary Statistics 9 8.62 6 5 4 3 2 1 1 1 1 5 Mean 2.96 Std Dev 1.4927562 Std Err Mean 0.0900166 Upper 95% Mean 3.137212 Lower 95% Mean 2.782788 N 275 Multivariate Correlations FACE INCOME EDUCATION NUMHH FACE INCOME EDUCATION 1.0000 0.2172 0.2438 0.2172 1.0000 0.1632 0.2438 0.1632 1.0000 0.1075 0.1424 -0.0635 NUMHH 0.1075 0.1424 -0.0635 1.0000 Scatterplot Matrix 12000000 10000000 8000000 6000000 4000000 2000000 0 FACE 10000000 8000000 6000000 INCOME 4000000 2000000 0 16 14 12 10 8 6 4 2 EDUCATION 9 8 7 6 5 4 3 2 1 NUMHH 0 4000000 10000000 0 4000000 2 4 6 8 10 12 16 12345678 Pairwise Correlations Variable INCOME EDUCATION EDUCATION NUMHH NUMHH NUMHH by Variable Correlation Count Lower 95% Upper 95% Signif Prob FACE 0.2172 275 0.1015 0.3271 0.0003* FACE 0.2438 275 0.1292 0.3519 <.0001* INCOME 0.1632 275 0.0458 0.2761 0.0067* FACE 0.1075 275 -0.0109 0.2229 0.0752 INCOME 0.1424 275 0.0245 0.2563 0.0182* EDUCATION -0.0635 275 -0.1805 0.0552 0.2938 6 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 4) MULTIPLE LINEAR REGRESSION Using the same data of the previous exercise, consider also the additional variables: • AGE è༎ age (in years) of the respondent, • GENDER è༎ gender of the respondent (0 for female, 1 for male), • MARITAL STATUS è༎ marital status of the respondent (1 for married, 2 for living with partner, 0 for other, like separated, divorced, widowed, etc.), • LN_FACE è༎ logarithm of the face amount, • LN_INCOME è༎ logarithm of the annual income. A multiple linear regression model for the logarithm of the face amount (LN_FAC...
View Full Document

This note was uploaded on 03/27/2014 for the course FINANCE v taught by Professor G during the Fall '14 term at Università Bocconi.

Ask a homework question - tutors are online