Lecture on Permutation Combination

More

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: re not in A, i.e., those which are in . Since the complement of a subset of S with r elements has n r elements, there are also C(n, n r subsets of S with r elements. 13 Combinations Example: How many ways are there to select five players from a 10‐member tennis team to make a trip to a match at another school. Solution: By Theorem 2, the number of combinations is Example: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission? Solution: By Theorem 2, the number of possible crews is 14 Section 15 Powers of Binomial Expressions Definition: A binomial expression is the sum of two terms, such as x + y. (More generally, these terms can be products of constants and variables.) We can use counting principles to find the coefficients in the expansion of (x + y)n where n is a positive integer. To illustrate this idea, we first look at the process of expanding (x + y)3. (x + y) (x + y) (x + y) expands into a sum of terms that are the product of a term from each of the three sums. Terms of the form x3, x2y, x y2, y3 arise. The question is what are the coefficients? To obtain x3 , an x must be chosen from each of the sums. There is only one way to do this. So, the coefficient of x3 is 1. To obtain x2y, an x must be chosen from two of the sums and a y from the other. There are ways to do this and so the coefficient of x2y is 3. To obtain xy2, an x must be chosen from one of the sums and a y from the other two . There are ways to do this and so the coefficient of xy2 is 3. To obtain y3 , a y must be chosen from each of the sums. There is only one way to do this. So, the coefficient of y3 is 1. We have used a counting argument to show that (x + y)3 = x3 + 3x2y + 3x y2 + y3 . Next we present the binomial theorem gives the coefficients of the terms in the expansion of (x + y)n . 16 Binomial Theorem Binomial Theorem: Let x and y be variables, and n a nonnegative integer. Then: Proof: We use combinatorial reasoning . The terms in the expansion of (x + y)n are...
View Full Document

This document was uploaded on 03/29/2014 for the course COT 3100h at University of Central Florida.

Ask a homework question - tutors are online