75 u i j1 1 3 u i j1 u i1 j u i1 j 3 5 5

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5 1 3 u 3,2 u 3,0 (u 2,1 u 4,1 ) .28506 5 5 similarly u 4,2 .39664, u 5,2 .49922,u 6,2 .59982 u1,2 u 7,2 .69994, u 8,2 .8000, u 9,2 .9000 (ii) Richardson’s Scheme is u i, j1 u i, j1 2r(u i1, j 2u i, j u i1, j ) Put r=0.75 u i, j1 u i, j1 3 u i1, j 2u i, j u i1, j (4) 2 Putting j=1 in (4) u 0,2 0,u10,2 1 3 u1,2 u1,0 (u 0,1 2u1,1 u 2,1 ) .07975 2 3 u 2,2 u 2,0 (u1,1 2u 2,1 u 3,1 ) .2555 2 3 u 3,2 u 3,0 (u 2,1 2u 3,1 u 4,1 ) .27855 2 u 4,2 0.38976, u 5,2 0.49895, u 6,2 0.59985 u 7,2 0.69985, u 8,2 0.8000, u 9,2 0.9000 Table showing a comparision of the values obtained by Dufort‐Frankel and Richardson scheme for second time‐level i=0 i=2 0 Dufort Frankel i=1 i=3 i=4 .1937 .2851 Richardson 0 i=6 i=7 i=8 i=9 i = 10 .0858 i=5 .4992 .6999 1.000 .8000 .9000 .8000 .9000 .3966 .2555 .2886 .0798 .5998 .4990 .3968 .5998 Graphically it is as follows: 1 0.9 Dufort Frankel Richordson 0.8 0.7 u(x.t) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 x 0.6 0.7 0.8 0.9 1 .6998 1.000...
View Full Document

This note was uploaded on 04/07/2014 for the course MATH 545 taught by Professor Prof.ramabhargava during the Spring '14 term at Indian Institute of Technology, Roorkee.

Ask a homework question - tutors are online