2 n 2 s 2 2 n s n 20 1 s s a 2 2 21 2 n 2 s

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (α − b) α − e + (b − a ) (b − a ) sin (ω t ) cos (ω t ) 2 ω ( s + a )2 + ω 2 (s + a) ( s + a )2 + ω 2 s +α ( s + a)2 + ω 2 19. 2 ωn 2 s 2 + 2ζ ω n s + ω n 20. 1 s ( ( s + a) 2 + ω 2 ) 21. 2 ωn 2 s ( s 2 + 2ζωn s + ω n ) 22. (s + α ) s ( ( s + a)2 + ω 2 ) 23. 1 ( s + c) ( ( s + a ) 2 + ω 2 ) −bt e α2 +ω2 ω −1 sin (ω t + φ ) , φ = tan (ω / α ) e − at sin (ω t ) e − at cos (ω t ) 1 ω (α − a ) 2 + ω 2 e − at sin (ω t + φ ) , φ = tan −1 ω α − a ωn e− (ζω n t ) sin ω n 1 − ζ 2 t , ζ < 1 2 1−ζ ( ) − at 1 −1 1 + e sin (ω t − φ ) , φ = tan (ω −a ) 2 2 a + ω ω a2 + ω 2 1 − (ζω t ) −1 e n sin ω n 1 − ζ 2 t + φ , φ = cos (ζ ) , ζ < 1 1− 1−ζ 2 (( α 1 + 2 2 a +ω ω )) (α − a )2 + ω 2 − at ω −1 ω e sin (ω t + φ ) , φ = tan −1 − tan 2 2 a +ω α −a −a e − at sin (ω t + φ ) e − ct − 2 2 (c − a ) + ω ω (c − a ) 2 + ω 2 , φ = tan −1 ω a−c...
View Full Document

This note was uploaded on 04/04/2014 for the course ME 3600 taught by Professor Kamman during the Spring '09 term at Western Michigan.

Ask a homework question - tutors are online