{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture Notes2

# Lecture Notes2 - 1 Formula Sheet of Statistical Mechanics...

This preview shows pages 1–4. Sign up to view the full content.

1 Formula Sheet of Statistical Mechanics Ch. 1 Review 1. Lagrangian equation and Hamilton’s equation 2. Energy Levels of some quantum systems a) 1-D infinite well: , 2 2 2 2 x m H - = η 2 2 2 8 ma n h n = e . b) 1-D oscillator: , 2 1 2 2 2 2 2 kx x m H + - = η w n n η + = 2 1 e . c) Rigid rotor: , sin 1 sin sin 1 2 2 2 2 2 + - = q q q I H η ( 29 I J J n 2 1 2 η + = e . 3. Calculation of Degeneracy e ¶e e e e w d d ) ( ) ( Φ = 3-D infinite well: ) ( 8 2 2 2 2 2 z y x n n n ma h + + = e 2 2 2 2 2 2 8 R h ma n n n z y x = = + + e 2 / 3 2 2 2 8 6 ) 3 4 ( 8 1 ) ( = = Φ h ma R e p p e . 4. Thermodynamics equations + - = j j j dN pdV TdS dE m , j j j dN Vdp TdS dH + + = m + - - = j j j N d pdV SdT dA m , j j j dN Vdp SdT dG + + - = m 5. Useful mathematical formula N nN N nN - = λ ! , ( 29 = = = + + 0 1 0 2 1 ! ! 1 1 r r N r i i N r N N N r N x x N x x x + - = + Γ = - = = 0 2 / ) 1 ( 2 / 1 2 / , 2 ) 2 1 ( , ) 2 ( 2 ) 1 ( 5 3 1 2 odd n a n even n a a n dx e x I n n ax n n p 6. Constants: Stefan-Boltzman constant σ =5.67 × 10 -8 W/m 2 K 4 , Bohr Magneton: 9.273 × 10 -21 erg gauss -1 , j q L q L dt dL j = j q L p j = j j j p q H q p H j - = =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Ch. 2 The Canonical Ensemble = k k a A a W ! ! ) ( 0 ) ( = - - E a a a nW a k k k k k j b a λ N j V j E p - = - - - = = j j j j j j e e V E P p p j j e e b b p E Ep p V E N - - + - = b b b , Ep p E p V N - - - - = , ¶b p p V E V N N - = + , , ¶b b b p T p T V E V N N T - = - , , = k k j j b B a A b a W ! ! ! ! ) , ( const nQ k T E S + + = λ rev rev j j j j j j w q dE P P d E E d d d - = + = V N T nQ kT E , 2 = λ T N V nQ kT p , = λ nQ k T nQ kT S V N λ λ + = , ) , , ( ) , , ( T V N nQ kT T V N A λ - = A a a W a a a W A A a P j a a j j j * ) ( ) ( ) ( 1 = = =
3 Ch. 3 Formula Table Microcanonical ensemble, ) , , ( E V N = degeneracy = ln k S dN T dV T p dE T dS m - + = 1 V N E kT , ln 1 = E N V kT p , ln = E V N kT , ln - = m Canonical ensemble, - = j V N E j e T V N Q ) , ( ) , , ( b Q kT A ln - = dN pdV SdT dA m + - - = V N T Q kT Q k S , ln ln + = T N V Q kT p , ln = T V N Q kT , ln - = m V N T Q kT E , 2 ln = Grand canonical ensemble, kT N j E N e e T V j m b m - = Ξ ) , , ( Ξ = ln kT pV pdV Nd SdT pV d + + = m ) ( m , ln ln V T kT k S

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 11

Lecture Notes2 - 1 Formula Sheet of Statistical Mechanics...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online