13 max m1 q q q q1 1 and for t 2 3 t

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e them using only the max marginals. pm (DQ1:T (1, 1)) = (9.13) max m1 (q ) ∗ q |q =q1 (1) and for t ∈ {2, 3, . . . , T } ∗ pm (DQ1:T (1, t)) = max mt−1,t (qt−1 (1), q ) ∗ (9.14) q =qt (1) Prof. Jeff Bilmes EE596A/Winter 2013/DGMs – Lecture 9 - Feb 6th, 2013 page 9-18 (of 180) k-best without the penalty Island Summary Scratch Find the block with the maximum score Define block scores, for each t ∈ {1, 2, . . . , T }, the following: ∆ pm (DQ1:T (1, t)) = max q1:T ∈DQ1:T (1,t) (9.12) p(q1:T , x1:T ) ¯ can compute them using only the max marginals. pm (DQ1:T (1, 1)) = (9.13) max m1 (q ) ∗ q |q =q1 (1) and for t ∈ {2, 3, . . . , T } ∗ pm (DQ1:T (1, t)) = max mt−1,t (qt−1 (1), q ) ∗ (9.14) q =qt (1) Finding the maximum block score then is easy: ∗ p(q1:T (2), x1:T ) = max pm (DQ1:T (1, t)) ¯ (9.15) t Prof. Jeff Bilmes EE596A/Winter 2013/DGMs – Lecture 9 - Feb 6th, 2013 page 9-18 (of 180) k-best without the penalty Island Summary Scratch The maximum score block Suppose t(2) ∈ argmaxt pm (DQ1:T (1, t)) is...
View Full Document

This document was uploaded on 04/05/2014.

Ask a homework question - tutors are online