6 q2 1 q2 1 q3 97 q3 1 98 99 dq1t

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: on into T blocks, meaning: DQ1:T (1, t) ∩ DQ1:T (1, t ) = ∅ for t = t and that DQ1:T (1) = T=1 DQ1:T (1, t). t Prof. Jeff Bilmes EE596A/Winter 2013/DGMs – Lecture 9 - Feb 6th, 2013 page 9-15 (of 180) k-best without the penalty Island Summary Scratch Partition into blocks That is, we partition DQ1:T (1) into T blocks of sequences as follows: ∗ DQ1:T (1, 1) = {q1:T ∈ DQ1:T : q1 = q1 (1)} DQ1:T (1, 2) = {q1:T ∈ DQ1:T : q1 = DQ1:T (1, 3) = {q1:T ∈ DQ1:T : q1 = ∗ q1 (1), q2 ∗ q1 (1), q2 (9.6) = = ∗ q2 (1)} ∗ q2 (1), q3 (9.7) = ∗ q3 (1)} (9.8) (9.9) ... DQ1:T (1, T ) = ∗ {q1:T ∈ DQ1:T : q1 = q1 (1), . . . , ∗ ∗ qT −1 = qT −1 (1), qT = qT (1) (9.11) (9.10) This is a partition into T blocks, meaning: DQ1:T (1, t) ∩ DQ1:T (1, t ) = ∅ for t = t and that DQ1:T (1) = T=1 DQ1:T (1, t). t Note: sizes are decreasing exponentially in t, but we do not use this fact. Prof. Jeff Bilmes EE596A/Winter 2013/DGMs – Lecture 9 - Feb 6th, 2013 page 9-15 (of 180) k-best without the penalty Island Summary Scratch Partition into blocks: tree graphic DQ1:T (1) = ... qT =q∗ T (1) ∗) q 2(1 q2 = q3 = q3∗...
View Full Document

Ask a homework question - tutors are online