851_lectures17_24

# If xn are general random variables with k1 exk then

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: d random variables on (Ω, F , P). If Xn ≥ Y almost surely for some Y ∈ L1 and for all n, then ￿ ￿ E lim inf Xn ≤ lim inf E(Xn ). (23.2) n→∞ n→∞ In particular, (23.2) holds if Xn ≥ 0 for all n. ˜ Proof. Without loss of generality, we can assume Xn ≥ 0. Here is the reason. If Xn = Xn −Y , ˜ n ∈ L1 with Xn ≥ 0 and ˜ then X ￿ ￿ ￿ ￿ ˜ ˜ E lim inf Xn ≤ lim inf E(Xn ) if and only if E lim inf Xn ≤ lim inf E(Xn ) n→∞ n→∞ because n→∞ ￿ ￿ ˜ lim inf Xn = lim inf Xn − Y. n→∞ Hence, if Xn ≥ 0, set n→∞ n→∞ Yn = inf Xk k ≥n so that Yn ≥ 0 is a random variable and Yn ≤ Yn+1 . This implies that Yn converges and lim Yn = lim inf Xn . n→∞ n→∞ Since Xn ≥ Yn , monotonicity of expectation implies E(Xn ) ≥ E(Yn ). This yields ￿ ￿ lim inf E(Xn ) ≤ lim E(Yn ) = E lim Yn = lim inf E(Xn ) n→∞ n→∞ n→∞ n→∞ by the Monotone Convergence Theorem and the proof is complete. Theorem 23.3 (Lebesgue’s Dominate...
View Full Document

## This document was uploaded on 04/07/2014.

Ask a homework question - tutors are online