F2007_HW3_Solt_1 - 1. (Short answer) in a wastewater...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. (Short answer) in a wastewater treatment plant! potable reuse, a. Would you be more concerned about chemical or biological waste and why? b. What is the dominant separation technique in wastewater treatment? ,1 h ,_ c . if) a r r in r131“ it) .. all ‘ €3¢J< raid-1:3»;J / Lg. ‘ ' _ Mu . l.) . ulQCJ—J m J, n art-rpm; or a I, dflfiatr'w? “miljflm ' ' = a ” - , I _ ., . a F H 'u ,1 7- -' " 5/? “CE? 5.)” 14’: Kai-{W nay/{6; .57 r 1:qu 5,1») 4,; {fit/fax (Sgt-2m {wt/9L “5345 (“fir Eda/ya. to} 5? A'— s 7 , . <1")! 39-? {ia»-d/:./:~»/I' 4g}- n . it}? of: r?“ g — fl / a ‘ .Ji' Z6, 4; w r wf 1,, . 70; .- (wow-76,. - ’kdh; f‘lr l/A/ » m, r 32' r’ r C L - m " - ‘9‘ s (“Air-‘1 oak-w Fifi/ff" 20?»; - M‘ L x r“ j j r P a wtfim aye/i» 4" f“ i i, w «I Mug/FL , A LII/1,599 i r H ,m L :,§€_ ., {CL-q.» ,2 f 4, .L. {:7 4. f f“; r 3132,“ [3’55 AWE) a M 2‘ m .7" - '\ ‘ "fl é H ' ’31“ j “1’?” (“El 51/3 gm”. fiblfl‘i/{i .505)? L) M 5/ l -3 t W- ar dk‘fi‘ié’r l ,1 j (.uxl {42’7‘Z‘f/ m; m ~ 7’ .. r 'r C. d ("f in}; } log; 35111671 3:3.“ r“: ,2 - g r U] C313.“ fl #231..€.,V3 ". art-tr“! (1%., {at n, “6923’ ; ;> ’ J" ,r?’ M -,r _, a) H ,A a “ ~- 1 ’6 M a f a , L41 5, [$951 / {/21 (354/5393 if“? {2:7 L a; k N om A r s a ' r ' I F 5 {organ .3 TC} EL“; 15;. W5; 7 fl . 4.; z w r" f f "" "/ . r _ A; : -t 31:31:; “:4 g j, J” l $“5‘fiiy‘j {rig r " )5; {Mr 5 5 {in}, a A m: Ma. r l * " r j .m/‘L {2“ Jr'sr.{} £fi.\ ’% 3-4 A f "v } “ " ‘F '1 f = w a fir at {Jr/5o»: 51’ w? Mar A kw? E k u I I.“ .3 n r .3 3. “Yr” 5‘3 ,3 l ‘5’"3/‘2/lxt/z H , (mm-Mo ‘l. Diaphragm cells used for measuring liquid diffusion coefficients are frequently calibrated by allowing 1 M potassium chioride to diffuse into pure water. The average diffusion coefficient in this case is 1.859 x 10'5 cm2/ sec. Your cell has compartment volumes of 42.3 cm3 and 40.8 cma; the diaphragm is a glass frit (porous glass membrane) 2.51 cm in diameter, 0.16 cm thick and of porosity 0.34. in one calibration experiment, the concentration difference at 36 h 6 min is 49.2% of that originally present. :3 Th“ 9.313. die-4a... f "1hr. gr 1, a. What is the cell's calibration constant {3? -- fl A, ., if /, a J . . - , a, “if flaw-g 93;" iii-62¢ A} flirts in. What is the effective length of the glass frrt s pores? WE» a we r; we L (I. , g - ~- g c. The current pores are about 2 x 10'4 cm in diameter. What is the effect of 1435‘; . I increasing the pore diameter ten times at constant porosity? (See Cussler, p. 22-24 for more detaiis on the diaphragm cell) “a?” {55:1 ii ‘i » [flaw-1' 1, .f 1/ g; #g Ar "T *7: W5 “Pg r i m 5 my. j“: “ 4 j i‘ .., r “ ‘ .— --’i ’ 4 I a, ) 'T' "1‘ " ‘ " “ "c' l :1' - ‘ ff ” .izf‘ 9—“ i - 5/5“ ; f$37~$’./t f "Ha: we?» '3’?! ,z w? {Jib/544:1: eff? i {/gm t A _ J C lifiu' fi/(Pe _ _ 15/ 1. Estimate the following coefficients. How do the predictions compare with experimentaliy determined coefficients? / 3:313» 51. Diffusion coefficient [3 for COZ in air (0.2 cm/sec from experiment) 3W b. Diffusion coefficient D for sugar in water, using the Stokes—Einstein equation (5.2 x 10‘5 cmzisec from experiment) a c. Tobacco mosaic virus is a iarge (40 miliion g/ mol and a pertiai specific: iii W3 volume of 0.73 cm3/ 9) virus. Estimate it’s diffusion in water using Stokes-- Einstein, assuming it is a sphere with radius 1000 A. Does this number make sense compared with your result for sugar in water? is _ 35%;; ‘1 i? , “A. : : a fly 1 Hog/,5?) {i 5:1 to my 4-x! fa “ii {axowigk‘ L k w 1—m- U ,4. (a L 2}, q {’3 ff M} H...“ . ..M..m_._........_. , .nm‘ i“ T: r 1. Air at 100°C and 2 atm passes through a bed 1 cm in diameter composed of iodine spheres 0.07 cm in diameter. The air flows at a rate of 2 cm/sec, based on an empty cross~section of bed. The area per volume of the spheres is 80 cm2/cm3 and fthe vapor pressure of iodine is 45 mm Hg. The mass transfer coefficient k can be caicuiated from the foiiowing correlation: .... ' 9r 0 43.42 I3 ff”... 5 f; ,.= u . '1 Xi 1K ““' 1 7 V ] is fii‘J‘rJLEi 6 v. :3 ~- 5 gfigftLg/thgt V07 1) , U ‘ f Where W is thexsupérficiai velocity, of is the particle diameter, *1} is the kinematic viscosity and D is the diffusion coefficient. 3. Draw the situation. Where is mass transfer occurring at the ievei of an MW individual iodine sphere? Draw a piot of how you expect gaseous iodine f;;§"‘",”'§2“‘"i. concentration to change as a function of position in the bed. 4 wt; . . . . b. How much Iodine Wiii evaporate from a bed 13 cm long, assuming a bed as i7 rm porosity e of 40%? Liwmewf i A if?» 12 r: a i. W. 91”} {1:16- ; ‘ “ r.“ L ‘i f‘ m guy“ {2 r? , I; 53'“ 3' ‘3 ...v 7 . T7 [gal I am‘;"2;““"i “5‘ ‘ iii” . ~ 2 (3'9 AV,- 3 (saw ~ “that “C i 0 “I ’ i g . __w _ g. m t x I: aw" it J 0 (3; D :: "s - am / Mrs-s it -,- = r p m C '3 W i ‘ as J: d’d/ t uni V Cr _‘(J.M" I w“ 7 EM Kai—Mllmhi—i-fgripij x; ’3 ‘ ’g is“ r’ :6- ) a if; a 14:} ,a - fl ,- F ,. i will) \ Z» “12, v Wei i (>4 some meet Lei" 355“: xi. =' '9 i I." i mica—tamed «5"; ¥ rim, g 7.; i flea?” J' i , ‘ i5 magi-i own ewe-c»: iii-“5% x. “ '3‘“; if 39/91 ,4“ “i” ~a§ln~ Uh m, f" U PAM LL, 1 ~‘" "' J ~ ’* F, _ fl _ M n K was 9/2:jr~f“}\ {1r} he, I: 14:9 , ’ a H i ,1» - " A WWW—«me .i z W _,.«—«~""‘ ‘ .I Mr? "W"- Aiigfimx fl“ {flfiiimf - C. v , =tg-im5’7ia IF" «is z ' 3’ mice/P ' ' ,3 i -’ ( FUSE? 2051 “ a n ("v :1 ,. . ‘° Eff” -*'-’ Ci?“ J _\ A 3 3mm i. .3 hth UQPKC/ t... it ~ ; af‘ 1 wig—«Tim “ (I \"W (i r" . “a J" 1' » ,2 L4 ‘ r r—‘ i L? <, (J) ‘ ‘ ' E? i if a .i ‘f‘ Kay—V is 1 1i“ ('9 , \ «Jo‘s We 54: a0 ‘1 if“ agar ( J i. rt“ a i fl ’ W‘s—wmwww WM { If]! :23; :7 b} 3/ "it; {5 :3 W . a - '"‘ ‘1 "““' f L ‘ r’ i Q '2“ "‘6 39.5] '— is: LIA {,1 i i m L. V A L ‘i. Petrochemical processing involves two major types of chemical reactiens: cracking and reforming. in cracking, large hydrocarbon molecuies of perhaps 20 carbon atoms (020) are broken (“cracked”) into smaller meiecuies with about four carbon atoms (C4). in reforming, these 04’s are combined to make Cg molecules (octane), the standard for gasoline. imagine that you are studying a very active solid catalyst for reforming. This catalyst is so active that the reaction is essentially irreversible. Thus (34’s diffuse from an almost pure stream of C4 to the solid surface, where they react almost instantly. The Ca product diffuses away from the catalyst. :7, M a. What is the total flux of C4 toward the surface? (Hint: diagram the situation, starting with a flux balance on C4. What is the stoicheometric reiationship between the total fluxes of C4 and Ca molecules?) all?” 13. What would the C4 flux be if the system were diiuted with a large amount of nitrogen? mun»??? " t {id e ‘ '/ "z .n we 1L. (1 ,. ,. = l'. r». . U x _ r. ,_, _ iv” ,0 'M—F’ W”: ’ '/ \ :“s’3 (5 _4 5’3/v-5'5rvf S; :' (Di/\j'fl/YZfi: “'3 SEN f C: )5 ‘i ’D H? “- H. a“ V . v ,1? (in; :1 ._ d y f, _ g E f . A: a a! ' r f s A a. ‘3 V15“? 0"sz ’3‘“- 00 ch " “ R) f \ /\ /= 1'” " ’ B I ’\ it‘lbiel't'wgalcea gut/a ‘5’ 25m) ” Ci“ ‘ “‘ "WE-“iv : . 1 _ U r ' l .71 i i. _ . u d, \ f .J, (’1 ' fr Hgl’fv‘trig Effigk fan“. “pain ‘6” “C E C’ a V ‘2 anemic; if“) "/7? ‘ 2;. “""r' ‘L ‘44 l 9'1. I _... a 2 : '-. x 5, ~ h w a. M. an . E/ if!“ 5' C) ‘ ,5 a n "‘ a M”?de “.7 — fl 23* 5 “ 0 T. JAM MM- I'm-“J I F r E i’aedfluifld‘fif‘ at {2:15 ,Jx’lii—H £95.22, “3 L} 1 _,:r ,_ , - , 3 y g 1 ET I U E 2."); O " , r' I’- lfv’L H“ i "y ” 5‘" a i, J team is if Qt» l *5 u am in,“ flat ,1 J}: II l ( = j i Cemssem‘fi {if _ v I q _ i v . . t - . t r , g M L32 ,a 03”? “‘“m‘ (lite-U117? were '0 kb‘\‘lpflu f 9 l E'r‘ I, .f' r a pm i still/i 3?“ gift-i: Lt: Céi‘ / ‘M ‘1') ‘0 3 “'3’; J “CAL i £9543 ' iii \ _o w..__.:,_u-m "WWW M cm.” “#0....” u_._~m«w——M——~m-www~—~-—-~M_WW% _____ .e- mmwmw” m“ MWWW“ W "—ww “i KW .ul "x: i g gr u 1' A. 1Q,» 2”“: v—_; ’54 V I m; at”? £2, a SS 3963.,W/Laf/L “ 5‘ i if" “P ‘ cg" I ,3 ) {fig i "7 u -1 "f1 _ I“; ‘~ 1". 1 f; L 6- "N ff , :l_ g g I c 6 § "it lit .: .= 9 Tab" 3 _~ {If-‘5. ark-5.4 fl Q 9‘ . ._ .I y .. 1 « x 2 k . 5.2L QTQ 3, {I grail/4; 4fiL'zJHE‘ Para 3.5 ("i . f- . i (3% ,_ 5W} 04%.;- a m H 0;"- a/i, , , ~ ‘5 ;:_;.’3’ » v‘ x a? W.” Jx fa THEM- “ ‘ J . a J (7 kg?) "_ fi‘ U f (25‘ f i“ ~---,.xr a *- o r: r: 4 I! _. , ,_ if It i. C 4, a fl n a. ‘I‘ r “A. ‘1? edit-J0 if- " 1:1 i :3 “:1 3&5? ’ ‘ . ' ‘. , I - f r" ‘; M' Q ” “ i x w 3 2 1/LG Lima-19% air-1‘ an ) {A} o ‘ Vii ’ K A Q if fiw‘ A kw: / k i} . k f/ — ax‘ {'0 aka (a k ,' Mew“ A r / a . ‘ “ . a f a / (a , ,f f, _‘ 5:3 5‘ v {A an {’6’ H1 rm»: _. gufi :- W *M/{‘ ~->H~‘3*{-u~</s i442; “WU; x.“ ' r '. f; a K r ‘ ( ‘ x .7 n _ “a a) It: ” I. i {a a) > a _ 3g '1 “x I 1‘4 u? if n U; i La- AJ w.” m, Mi - a Z /l. g War-M a) r I “as; "~‘__,,..~M‘nmmm..m.m_mw.m "I. r r . 41‘ " x.u,,r”r§\'.;rc‘g M “ "J V wz- __,\./ . /\.fi {33” 3U j. 1.3; 5” gum-f1?) m LL ) ...
View Full Document

Page1 / 10

F2007_HW3_Solt_1 - 1. (Short answer) in a wastewater...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online