This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: .1 +2gu..a+w,,
£{u(t)} = £{tu(t)} = 3‘,
£{e‘“‘u(t)} = ﬁ; For linear motion, (Sum of Forces) 2 (Mass)*(Acceleration). For rotational motion (Sum of Torques) = (Moment of Inertia)*(Rotational
Acceleration). For viscous friction at slow speeds, Pd,” = —fd,ng 2: (velocity).
For a linear spring, Farms = —k 2: (displacr‘mzrnt). Proportional Control C(s) = K. ProportionalDerivative Control C(s) = 1\'(s + a).
ProportionalIntegral Control C(s) = K + f.
ProportionalIntegraLDerivative Control C(s) = K(1 + + b5).
Lead Control C(s) = Kﬁﬁ, a < b. Lag Control C(s) = Ki11 :1 > b. s+b‘
LeadLag Control C(s) = b < a < c < d. Asymptotes for Root Locus are at angles of $130” from a centroid at 2% Controllability Matrix (2 _—. [13 AB A23...]"—'"
C
. . . . ' _ CA
Observabihty Matrm O — CA.) Aokermann’s Controller Formula: K [O 0 O 0 1]C"d(.—1)
0
O
Ackermann‘s Observer Formula: L = d(.4)O’1 0
1 Control Canonical Form: A = C=[an_1 an_2 an] Cor4 1 2 Parts 20 Points Consider three stable transfer functions H1(s), H2(s) and 173(5) 1.1 2 Points If W3) : (Hi(8) + H2(8) + H3(3))U(s), where u is the input, is the transfer
function {78% stable? Why or Why Not? y?) 1L9 {Hamper pancﬁbﬂ f‘) ffqblgr 666406 If eqch O’C "‘9 transfer Huge.) qrc Maw, he“ the rem; y w, 1)? hwan 67 Me :wu 1.2 10 Points If H1, H2 and H3 have statespace realizations of {A1, Bl, Cl, D1}, {A2, B2, 02, D2}
and {A3, 83, Ca, D3} respectively, write a statespace realization for Y(s). 2 3 Parts 20 Points Consider the transfer function Y(s) = ﬁlms) + ﬁgULs) + s—i—gU(s) 2.1 10 Points Write this transfer function in state—space form, using any realization. Modal anMc‘qu Em r. 4 0 o l x '5 (1‘1 C Xl’ l U
C U ‘3 I y: [1 Auk l'DUl 2.2 5Points For your realization‘ what are the eigenvalues of the “A” matrix? 2.3 5 Points Is your realization observable from Y? C l 13 5
e: (A : ‘2 11“? JelCﬂJ‘zﬂ (“N 2 J7 Obtamb’e 3 2 Parts 20 Points 1 0 0
Consider a system with statespace realization :i:(t) = I: 0 1 1 ] $03) +
0 0 —1 o
[(1)]u(t),y(t) = [1 1 1]z(t). 3.1 10 Points Is this system controllable? Why or why not? I
.: 8 ‘l .. o
C [ MAB} e fill 491:0 ram anew/e
I “I 1
“VA ufeh‘J Meal/y :W/f 3.2 10 Points
Is this system observable? Why or why not?. g: C; a l5“! I t)
M: — Jen/q ’9 11d 4 3 Parts 25 Points Consider a system with transfer function H (s) = 2H4 4.1 5 Points
Find a statespace realization for the system.
1 v _L« A  at e I
g 3"— __ . ‘ : ’ CV
Hf) mq (3+1) 9+; 34 0D XZ”J)( 7" U V; l): J 4.2 10 Points Augment your state space to allow for zeroerror tracking of a step reference
input. Rﬁxzf 4&30 1‘ Cg~ Li}: [’33 33+ [it : [3 gm 4.3 10 Points y : [o {IQ}, Design a feedback controller which places your poles at s = ——1 :l: 3'.
My ii :5 (3 M :4 5+ ~‘ :: l
5) C I J) S 01)
&
arm:5 n: +1 _ it lit 24/5]:le all [Fifi [l7 K: [:0 HUG“)
=C0‘1[%;}[::3 snags Cm: :: — ‘
l [farm [8 13+ géﬂ l 5; UR}? 1pc} 5 2 Parts 15 Points Consider the system with transfer function H (s) = % 5.1 5 Points Draw the root locus for the system in proportional feedback. 5.2 10 Points Consider the controller 0(3) = 5,174 (chosen to track a. sinusoid). Is the
system H (5)0 (s) in proportional feedback ever stable? Why? ...
View
Full Document
 Spring '14

Click to edit the document details