code.tex - \documentclass[conference]{IEEEtran}...

This preview shows page 1 - 3 out of 6 pages.

\documentclass[conference]{IEEEtran}\documentclass{article}\IEEEoverridecommandlockouts% The preceding line is only needed to identify funding in the first footnote. If that is unneeded, please comment it out.\usepackage{cite}\usepackage{amsmath,amssymb,amsfonts}\usepackage{graphicx}\usepackage{textcomp}\usepackage{xcolor}\usepackage{titlesec}\usepackage{textcomp}\usepackage{epsfig}\usepackage{algpseudocode}\usepackage{pgfplots}\usepackage{tikz}\usepackage{hyperref}\usepackage{graphicx}\usepackage{enumitem}\usepackage[utf8]{inputenc}\pgfplotsset{width=10cm,compat=1.9}\usepgfplotslibrary{external}\usepackage[linesnumbered,ruled,vlined]{algorithm2e}\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08emT\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}\usepackage[ruled,vlined]{algorithm2e}\tikzexternalize \begin{document}\title{Implement Strassen’s Matrix Algorithm \\\text{\Large{DAA ASSIGNMENT-4 , GROUP 6}}}\author{\IEEEauthorblockN{Shreyansh Patidar}\IEEEauthorblockA{ \text{IIT2019018}}\and\IEEEauthorblockN{Biswajeet Das}\IEEEauthorblockA{ \text{IIT2019019}}\and\IEEEauthorblockN{Hritik Sharma}\IEEEauthorblockA{ \text{IIT2019020}}}\maketitle{\textbf{\textit{Abstract:In this paper we have devised an algorithm which is animplementation of Strassen’s matrix algorithm using divide andconquer.\\\\This report further contains-\begin{enumerate}[label=(\Roman*)]\item Algorithm Design \item Algorithm Analysis \item Result \item Conclusion\end{enumerate}}}}\maketitle\section{INTRODUCTION}
In this report, we are going to discuss strassen matrix multiplication,formula of matrix multiplication and algorithms for strassen matrix multiplication.Let us consider two matrices X and Y. We want to calculate the resultant matrix Z by multiplying X and Y. Matrix multiplication is a \href {}{binary operation} that producesa \href{(mathematics)}{matrix} from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix,

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 6 pages?

Upload your study docs or become a

Course Hero member to access this document

Term
Fall
Professor
posma
Tags
Multiplication, Divide and conquer algorithm, Strassen

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture