Accessing Normality(1)

# Accessing Normality(1) - skewnessinthedata whenx1,x2,...

This preview shows pages 1–3. Sign up to view the full content.

Ways to Assess Normality Some of the most frequently used statistical methods are valid only  when x 1 , x 2 , …, x n  has come from a population distribution that at  least is approximately normal.  One way to see whether an  assumption of population normality is plausible is to construct a  normal probability plot  of the data. normal probability plot  is a scatterplot of (normal score, observed  values) pairs.    A strong  linear pattern  in a normal probability plot suggest that  population normality is plausible. On the other hand,  systematic departure  from a straight-line pattern  indicates that it is not reasonable to assume that the population  distribution is normal. Such as curvature which would indicate  skewness in the data Or outliers

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Let’s construct a  normal probability plot .   Since
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern