precal_exercise_matrix - 1 Solve the system of equations by Gaussian elimination or Gauss-Jordan elimination method 3x y 2z = 1 a 2x 3y z = 3 x 2y z = 2

precal_exercise_matrix - 1 Solve the system of equations by...

This preview shows page 1 - 4 out of 6 pages.

1. Solve the system of equations by Gaussian elimination or Gauss-Jordan elim- ination method. a. 3 x + y - 2 z = - 1 - 2 x + 3 y + z = - 3 x + 2 y - z = - 2 b. 4 x - 3 y + 7 z = 14 3 x + y + 3 z = 5 x - 7 y - 2 z = 6 c. 2 y + z = - 1 x + 4 y + z = 1 x - 3 y = 2 d. 7 x - y - z = 2 - x + 2 z = 5 5 y - z = 7 e. x + 3 y - z = - 7 y + z = - 2 2 y - 3 z = - 5 f. - x - y + z = 0 x + y = - 7 x - y - 2 z = 5 g. 10 x + 5 y - z = - 7 x + 2 z = - 6 x + 2 y = - 4 h. x - y + 9 z = 30 2 x - y + z = 7 3 x + y - 2 z = - 5
i. 4 x - 3 z = - 15 5 y - 2 z = - 12 - x + y = 1 j. x + y - z = 1 x - y + z = - 1 x + y + z = 3 k. 4 x - y + 36 z = 24 x - 2 y + 9 z = 3 - 2 x + y + 6 z = 6 l. 3 x + y = 2 - 4 x + 3 y + z = 4 2 x + 5 y + z = 0 2. Given matrix A and B , find AB and BA , if defined: a. A = " 1 - 2 3 2 - 5 0 # B = - 3 7 2 2 5 - 4 b. A = " 8 - 5 - 3 3 11 5 # B = 12 - 6 - 4 5 11 - 7 0 3 - 1 0 - 3 - 2 c. A = 3 - 6 11 7 8 B = h 6 - 1 - 7 10 4 i d. A = 12 3 - 9 - 3 - 8 10 - 4 3 2 B = 5 - 6 7 - 1 - 1 9 3 2 - 1
e. A = 7 13 11 - 1 5 - 12 8 0 0 B = 1 1 - 7 14 - 5 - 15 - 6 - 8 9 f. A = 7 12 - 4 - 17 - 16 5 18 9 13

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture