Sect10.8b - Wm A 5“”ka =02 A=o WW‘bao =5 use But 44m...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Wm: A? 5“”ka =02; A=o WW‘bao =5 use. But 44m: dots "0+ wsfib We 8.6. 'ux(a,133:4_(®_ 3° (1’40 1% mat POQQ‘H‘C. 039‘: \{”=o =7 W137: A+B’a I ‘ ‘ Y : B :0 z? =A (Wen \(‘hpzo fim am '5 $0 +ke owm 13c. \f‘(b\=o 2% santh ) x”): beo-x, and X70): D =0 =7 Knit-C. 3" “chip-4 AC = co (Maw) vs a Mammw mam. 0:29: my: Kawifing-r gwgma, P ’V N ‘ .- th): Afiwng-BWs-‘nl’ég Do’sflfl [how «*1 So FundameMal Same/rs om. /0.8p.18 This Mar? Saxth We nmhwnogenm [3.6. 11,01,115) 93(13): u‘xahfl) = an Sin)“ (A? 60$ ".713 : £93) MWMO q60,51§:© (Mac/LA a,” 1 ' X Y 03;: M,“ X’YIYYU:O X i; ‘ ‘0” ><"+o~><:o Yaw, O Y/dsCD i(3_© YGUzCD Y 0 # CO’WSFCIP ‘ I ‘ ‘ I f‘ X Prdb/em ‘ 'T'A/b rs qn eyenuq/L/e. Prob/em ‘I’Kofl- we. have. geen several #‘mes. I105 EEO/04704 f$ A _ Mn: 1?». SM"??? 1,2,3 and gr, Che. dupi- “1?: be. ale/#erm/eeo’ .q 1 . ' (Jay V 3C7} san—LIYBCKX ‘ ‘7},y CosCh-I; O ' o a 01 q fir n j "'77 _ fl ’1)‘ \ jug fiCob(-fgy)0l)< ‘ (Org/147‘ C05 7:1)2 {35147008 or 3 y o a a 0‘1 MY 9 2 "'77)‘ 9/3 C? / I277" Ci 1 vest—n71? C 5 38 +0 7%.?) 5’” “3 )L ‘0 +377 03(3 )‘(m'rj 314(12 1 "O. Q 6:) $14(;3~O*é% 5,5617) +éflfl’ SM 1 c2 6%) 6%? 117 C - 1 Q EL)1 ‘ L/q SM (9) " a w ("11% W 5'" a» w L” @646?) a 690% = We») 90C "3' 02' (m [(20 n47?) cred] ; Problem 12 part c > u:= (x, y,m) ->sum (4*a/ ( (n*Pi) A2*cosh (n*Pi*b/a) ) *sin (n*Pi/2) *sin (n*Pi*x/a)*cosh(n*Pi*y/a),n=1..m); a sm -n 1: sm cosh 2 a a u:=(x,y,m)-—> 4 b nn nznzcosh[ J n=l a > a:=3:b:=1: ' > plot({u(x,0.3,20),u(x,0.5,20),u(x,0.7,20),u(x,1,20)};x=0. .3); 0 0 0.5 1 1.5 2 2.5 3 > plot({u(0.5,y,20),u(1,y,20),u(1.5,y,20),u(2,y,20),u(2.5,y,20) },y=0..1); 1.4 1.2 0.8 045 0.4 l 10.9,9. 2.3 > plot3d(u(x,y,20),x=0..3,y=0..1); OO O? I-‘H It. In this problem u doesn’t get as small as y increases as it did in problem 1. Also in problem 1 u=0 for y=0 while that is not true here. The general trend and shapes are the similar. 1 10.6 p. 2‘1 2L- _ Y” - >< ‘ 7 0” X”—¢”%>C5 \f)HTY=(3 «who \//0\3-O mom: A A A YA 3X6J~ 6X6 3 was: <9.- 3 +2; :3 22:4; , b , -A b - fl - V (45sz a 6* -exe b .31); 5* 193:0 sv \yO V 6:0 ” ‘HNMI sa/cflvvn CQSBQ 0:0 Y :0 :3 Y: +1; A Nt‘Cll Saldhdn YRS: E :O Y’Cé); 8:,0 ‘fY‘ +\LY:O msw Msmfléfi YMX: 3:0 Y :: )GQofiCA&b was: MmOABm flzo or mambo ’h’ w m. 6’ sa/(filTo'n cobCAQ:C> :3 [MO : 5921+“.le :7 x; 52% m, n20]? J l I 55¢ pquLb C4: 3/35,.g2 OW: SM 3%??? c/g d = - ' - ‘4 (ab 95L) ‘9 V: _Cél§j§7f COS ggflg éfif'l 1'7 mum 59%'g”\<:o~s(a7flffi/ + {‘25 c954,?ch 33%,) 09 0 .3 +5 _ _ f] , by Pan 2’ ",4 o w ' , 2 15 3 9331/») b : O‘O +‘2 (QnHM'J/ Cog) 9J9 U0 0 1o -2 (ca - cm .1 1(éélrgw3 {104,442 9111/ 1y) 9' b [mamas Problem 13 part c > u:=(x,y,m)—>sum(32*b‘2/((2*n+1)“3*Pi“3*cosh((2*n+1)*a*Pi/(2*b )))*sin( (2*n+1) *Pi*y/ (2*b) ) *cosh( (2*n+1) *Pi*x/ (2*a) ) ,n=0. .m); m . 1(2n+1)1ty . 1(2n+1)1cx b2 sm cosh 5—- 32 a 1(2n+1)an] u:=(x,y,m)—> (2 n + 1)3 n3 cosh[- 2 b 12:0 > a:=3:b:=2: . > plot({u(x,0.5,20),u(x,1,20),u(x,1.5,20),u(x,2,20)},x=0..3); 1.8 1.5 1.4 1.2 1 0.8 0.8 0.4 0 0.5 1 1.5 2 2.5 3 x > pl°t({u(o'5IYI20)lu(1IYI20)lu(1'5IYI2o)Iu(2IYI20)Iu(2°5lYI20) },y=0..2); 1.4 1.2 0.8 0.6 0.4 0.2 Ilmar-Zi > plot3d(u(x,y,20) ,x=0. .3,y=0. .2); . . . cowgmmpwamm o 0.. 000° HHHH o :( 10.8,. 7o] ...
View Full Document

This homework help was uploaded on 04/09/2008 for the course MATH 2400 taught by Professor Yoon during the Spring '04 term at Rensselaer Polytechnic Institute.

Page1 / 14

Sect10.8b - Wm A 5“”ka =02 A=o WW‘bao =5 use But 44m...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online