Forecasting Airport Passenger Arrivals.xlsx - CASE PROBLEM...

This preview shows page 1 - 7 out of 7 pages.

CASE PROBLEM - FORECASTING AIRPORT PASSENGER ARRIVALS Day 4-6 AM 6-8 AM 8-10 AM 10-noon noon-2 PM 2-4 PM 4-6 PM 6-8 PM 8-10 PM 1 2400 2700 3200 1400 1700 1800 1600 800 200 2 1900 2500 3100 1600 1800 2000 1800 900 300 3 2300 3100 2500 1500 1500 1800 1900 1100 200 4 2200 3200 3100 2200 1900 2400 2100 1200 400 5 2400 3300 3400 1700 2200 2100 2000 1000 600 1 6 2600 2800 3500 1500 1700 1900 1500 1100 300 7 1900 2800 3100 1200 1500 2000 1400 900 400 8 2000 2700 2500 1500 2000 2300 1900 1000 200 9 2400 3200 3600 1600 2100 2500 1800 1400 200 10 2600 3300 3100 200 2500 2600 2400 1100 400 11 3100 3900 4100 2200 2600 2300 2500 1100 300 12 2800 3400 3900 1900 2100 2500 2000 1200 300 13 2700 3800 4300 2100 2400 2400 2400 1200 400 14 2400 3500 4100 2400 3000 3200 2600 1200 700 2 15 3300 3700 4000 2600 2600 2700 2900 1000 300 16 3500 4000 3800 2300 2700 3100 3000 900 200 17 2900 4100 3900 2400 3000 3200 2500 1100 500 18 3400 3800 4200 2000 2500 3000 2200 1000 300 19 3600 3600 4000 2300 2600 2800 2600 1200 200 20 3700 3700 4000 2200 2600 2700 2400 1200 200 21 4400 4400 4500 2600 3300 3400 3000 1200 400 22 4200 4500 4300 2500 3400 3600 3100 1400 300 23 4500 4500 4700 2700 3400 3500 2900 1200 300 24 4600 4600 4600 2500 3200 3500 2800 1300 300 3 25 4500 4300 4400 2900 3300 3300 3300 1500 400 26 4200 4300 4500 3000 4000 3400 3000 1500 600 27 4500 4500 5100 3300 4000 3700 3100 1200 300 28 4300 4200 4300 2800 3500 4000 3300 1100 400 29 4900 4100 4200 3100 3600 3900 3400 1400 500 30 4700 4500 4100 3000 4000 3700 3400 1200 500 31 6 Total 98900 111000 116100 65200 80700 85300 74800 34600 10600
0.146 0.164 0.171 0.096 0.119 0.126 0.110 0.051 0.016 4470.65 5017.61 5248.15 2947.28 3647.94 3855.88 3381.24 1564.05 479.16 27207.72 30536.47 31939.50 17936.74 22200.84 23466.32 20577.73 9518.58 2916.10 4926.501 5529.238 5783.284 3247.805 4019.905 4249.045 3726.009 1723.528 528.017 Seasonal Factor Daily Seasonal forecast Annual total Forecast Good model Annual Average demand forecast
Model 2 Linear Regression Model 1 Annual demand Total Daily forecast Absolute error Daily demand forecasr 15800 0 Intercept(a) 14534.71 x y 15900 15571.95 328.05 Slope(b) 518.6207 1 170200 15900 16090.57 190.57 Forecast(y(4)) 30611.95 2 176500 18700 16609.20 2090.80 3 180700 18700 17127.82 1572.18 Correlation (R) 0.958722 16900 17646.44 746.44

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture