Course Hero Logo

HW1.pdf - Homework 1: Due Sep 8th 12pm ORIE 4520:...

Course Hero uses AI to attempt to automatically extract content from documents to surface to you and others so you can study better, e.g., in search results, to enrich docs, and more. This preview shows page 1 - 2 out of 3 pages.

ORIE 4520: Stochastics at ScaleFall 2015Homework 1: Due Sep 8th, 12pmSid Banerjee ([email protected])Problem 1: (Practice with Asymptotic Notation)An essential requirement for understanding scaling behavior is comfort with asymptotic (or ‘big-O’)notation. In this problem, you will prove some basic facts about such asymptotics.Part (a)Given any two functionsf(·) andg(·), show thatf(n) +g(n) = Θ(max{f(n), g(n)}).Part (b)An algorithmALGconsists of twotunablesub-algorithmsALGAandALGB, which have to beexecuted serially (i.e., one run ofALGinvolves first executingALGAfollowed byALGB). Moreover,given any functionf(n), we can tune the two algorithms such that one run ofALGAtakes timeO(f(n)) andALGBtakes timeO(n/f(n)). How should we choosefto minimize the overall runtimeof ALG (i.e., to ensure the runtime of ALG isO(h(n)) for the smallest-growing functionh)?How would your answer change ifALGAandALGBcould be executed in parallel, and we haveto wait for both to finish?Part (c)We are given a recursive algorithm which, given an input of sizen, splits it into 2 problems of sizen/2, solves each recursively, and then combines the two parts in timeO(n). Thus, ifT

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 3 pages?

Upload your study docs or become a

Course Hero member to access this document

Term
Summer
Professor
NoProfessor
Tags
Conditional Probability, Probability, Probability theory, Sid Banerjee

Newly uploaded documents

Show More

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture