ISM_T11_C01_A

ISM_T11_C01_A - CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS AND THE REAL LINE 1. Executing long division, 0.1, 0.2, 0.3, 0.8, 0.9 " 99999 2389 œœœœœ 2. Executing long division, 0.09, 0.18, 0.27, 0.81, 0.99 " 11 11 11 11 11 2391 1 3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6. a) NNT. 5 is a counter example. b) NT. 2 < x < 6 2 2 < x 2 < 6 2 0 < x 2 < 2. Ê ±±± ʱ c) NT. 2 < x < 6 2/2 < x/2 < 6/2 1 < x < 3. ÊÊ d) NT. 2 < x < 6 1/2 > 1/x > 1/6 1/6 < 1/x < 1/2. e) NT. 2 < x < 6 1/2 > 1/x > 1/6 1/6 < 1/x < 1/2 6(1/6) < 6(1/x) < 6(1/2) 1 < 6/x < 3. Ê Ê f) NT. 2 < x < 6 x < 6 (x 4) < 2 and 2 < x < 6 x > 2 x < 2 x + 4 < 2 (x 4) < 2. ± ± ± Ê ± Ê ± ± The pair of inequalities (x 4) < 2 and (x 4) < 2 | x 4 | < 2. ±± ± Ê ± g) NT. 2 < x < 6 2 > x > 6 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2. Ê Ê ± ± h) NT. 2 < x < 6 1(2) > 1(x) < 1(6) 6 < x < 2 Ê Ê ± ± ± 4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y 5 < 1. a) NT. 1 < y 5 < 1 1 + 5 < y 5 + 5 < 1 + 5 4 < y < 6. Ê ± ± Ê b) NNT. y = 5 is a counter example. (Actually, never true given that 4 y 6) ²² c) NT. From a), 1 < y 5 < 1, 4 < y < 6 y > 4. Ê Ê d) NT. From a), 1 < y 5 < 1, 4 < y < 6 y < 6. Ê Ê e) NT. 1 < y 5 < 1 1 + 1 < y 5 + 1 < 1 + 1 0 < y 4 < 2. Ê ± ± Ê ± f) NT. 1 < y 5 < 1 (1/2)( 1 + 5) < (1/2)(y 5 + 5) < (1/2)(1 + 5) 2 < y/2 < 3. Ê ± ± Ê g) NT. From a), 4 < y < 6 1/4 > 1/y > 1/6 1/6 < 1/y < 1/4. h) NT. 1 < y 5 < 1 y 5 > 1 y > 4 y < 4 y + 5 < 1 (y 5) < 1. ± ± ʱ ±Ê ʱ ±Ê± ʱ± Also, 1 < y 5 < 1 y 5 < 1. The pair of inequalities (y 5) < 1 and (y 5) < 1 | y 5 | < 1. Ê ± ± ± ± Ê ± 5. 2x 4 x 2 ±³Ê² ± 6. 8 3x 5 3x 3 x 1 x 1 ±   Ê ±   ± Ê Ÿ ïïïïïïïïïñqqqqqqqqp 7. 5x 3x 8x 10 x ±$Ÿ(± Ê Ÿ Ê Ÿ 5 4 8. 3(2 x) 2(3 x) 6 3x 6 2x ±³ ´ ʱ³´ 0 5x 0 x x 0 Ê ³ Ê ³ ïïïïïïïïïðqqqqqqqqp 9. 2x 7x 5x ±  ´ ʱ±  "" ## 77 66 x or x ʱ  ±   56 3 10 ˆ‰ 10. 12 2x 12x 16 6x 3 x4 42 ²Ê ± ² ± 28 14x 2 x x 2 Ê ² Ê ² qqqqqqqqqðïïïïïïïïî
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Chapter 1 Preliminaries 11. (x 2) (x 6) 12(x 2) 5(x 6) 4 53 ±² ± Ê ±² ± " 12x 24 5x 30 7x 6 or x Ê ±²± Ê ² ± ² ± 6 7 12. (4x 20) 24 6x ±Ÿ Ê ± ³Ÿ ³ x 5 12 3x 24 ±± 44 10x x x 22/5 Ê ± Ÿ Ê ± Ÿ qqqqqqqqqñïïïïïïïïî ± 22 5 13. y 3 or y 3 œœ ± 14. y 3 7 or y 3 7 y 10 or y 4 ±œ ±œ±Ê œ œ± 15. 2t 5 4 or 2t 4 2t 1 or 2t 9 t or t ³ œ ³&œ± Ê œ± Ê œ± " ## 9 16. 1 t 1 or 1 t 1 t or t 2 t 0 or t 2 ±œ± ʱœ! ±œ± Ê œ œ 17. 8 3s or 8 3s 3s or 3s s or s ±Ê ± ±œ ± Êœ œ 99 7 2 5 7 2 5 2 66 # 18. 1 1 or 1 1 2 or s 4 or s 0 ss s s # # œ !Ê œ œ 19. 2 x 2; solution interval ( 2 2) ±² ² ± ß 20. 2 x 2; solution interval [ 2 2] x 22 ± Ÿ Ÿ ± ß qqqqñïïïïïïïïñqqqqp ± 21. 3 t 1 3 2 t 4; solution interval [ 2 4] ±Ÿ± Ÿ ʱŸŸ ± ß 22. 1 t 2 1 3 t 1; ±²³ ² ʱ²²± solution interval ( 3 1) t 31 ± ß± qqqqðïïïïïïïïðqqqqp 23. 3y 7 4 3 3y 11 1 y ; ±% ² ± ² Ê ² ² Ê ² ² 11 3 solution interval 1 ˆ‰ ß 11 3 24. 1 2y 5 6 2y 4 3 y 2; ±² ³ ² "ʱ² ²± ʱ² ²± solution interval ( 3 2) y 32 qqqqðïïïïïïïïðqqqqp 25. 1 1 1 0 2 0 z 10; ±Ÿ±Ÿ Ê ŸŸ Ê ŸŸ zz 55 solution interval [0 10] ß 26. 2 1 2 1 3 z 2; ± Ÿ ± Ÿ ʱ Ÿ Ÿ ʱ Ÿ Ÿ 3z 3z 2 3 solution interval 2 z 2/3 2 ±‘ ± ß qqqqñïïïïïïïïñqqqqp ± 2 3 27. 3 ± ² ± ² Ê ± ²± ²± Ê ´ ´ "" " " " # # # # xx x 75 7 5 x ; solution interval ʲ² ß 2 2 7 5 28. 3 4 3 1 1 ±²±²Ê²² (Ê´´
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 11

ISM_T11_C01_A - CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online