Chapter 1 Solutions cont.

Chapter 1 Solutions cont. - Section 1.3 Functions and Their...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Section 1.3 Functions and Their Graphs 19 23. x012 24. y010 y100 25. y 26. y 3 x, x 1 2x, 1 x , x 0 x, 0 x œœ ±Ÿ ² ² Ÿ " x 27. (a) Line through and : y x ab !ß ! "ß " œ Line through and : y x 2 "ß " #ß ! œ ± ³ f(x) x, 0 x 1 x 2, 1 x 2 œ ŸŸ ±³ ²Ÿ œ (b) f(x) 2, x x 2x x œ !Ÿ ²" " Ÿ ² # ß# Ÿ² $ $ Ÿ Ÿ % Ú Ý Ý Û Ý Ý Ü 28. (a) Line through 2 and : y x 2 #ß ! œ ± ³ Line through 2 and : m , so y x 2 x a b ß " &ß ! œ œ œ ± œ ± ± ³ " œ ± ³ !±" ±" " " " & &±# $ $ $ $ $ f(x) x, 0 x x œ ±³# ²Ÿ # ±³ # & œ "& $$ (b) Line through and : m , so y x ±"ß ! !ß ±$ œ œ ±$ œ ±$ ± $ ±$±! !±Ð±"Ñ Line through and : m , so y x a b !ß $ #ß ±" œ œ œ ±# œ ±# ³ $ ±"±$ ±% #±! # f(x) x x œ ±$ ± $ ±" ² Ÿ ! ±# ³ $ ! ² Ÿ # œ 29. (a) Line through and : y x a b ±"ß " !ß ! œ ± Line through and : y !ß " "ß " œ " Line through and : m , so y x x a b " ß" $ ß! œ œ œ± ±" ³"œ± ³ !±" ±" " " " $ $±" # # # # # f(x) xx x œ ±± " Ÿ ² ! "! ² Ÿ " " ²² $ Ú Û Ü "$ ## (b) Line through and : y x a b ±# ß±" ! œ " # Line through and : y x !ß # "ß ! œ ±# ³ # Line through and : y "ß ±" $ß ±" œ ±"
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
20 Chapter 1 Preliminaries f(x) xx x œ ±# Ÿ Ÿ ! ±# ² # ! ³ Ÿ " ±" " ³ Ÿ $ Ú Û Ü " # 30. (a) Line through and T : m , so y x 0 x ˆ‰ ˆ ab TT T T T Î # # "±! # # # ß! ß" œ œ œ ± ² œ ±" f(x) , 0 x x, x T œ Ÿ ³ Ÿ ± T T T # # # (b) f(x) A, x Ax T A T x T œ !Ÿ ³ ±ß Ÿ ³ ߟ ³ Ÿ Ÿ# Ú Ý Ý Ý Û Ý Ý Ý Ü T T T T # # $ # $ # 31. (a) From the graph, 1 x ( 2 0) ( ) x4 x # ´² Ê −± ß µ% ß_ (b) 1 1 0 ## ´² Ê ±±´ x 0: 1 0 0 0 ´± ± ´ Ê ´ Ê ´ x 2 x 8 x2 x x (x 4)(x 2) ±± ±² # x 4 since x is positive; Ê´ x 0: 1 0 0 0 ³± ± ´ Ê ³ Ê ³ x 2 x 8 2x 2 x x (x 4)(x 2) # # x 2 since x is negative; ʳ ± sign of (x 4)(x 2) 2 ïïïïïðïïïïïðïïïïî ²² ± ± % Solution interval: ( 0) ( ) ±#ß µ %ß_ 32. (a) From the graph, x ( 5) ( 1 1) 32 x1 ³Ê ± _ ß ± µ ± ß (b) x 1: 2 Case ³ Ê ´ 3(x 1) ± ² 3x 3 2x 2 x 5. ʲ Ê ³ ± Thus, x ( 5) solves the inequality. − ±_ß± 1x1 : 2 Case ±³ ³ ³ Ê ³ 3(x 1) ± ² 3x 3 2x 2 x 5 which is true ´ ± Ê ´ ± if x 1. Thus, x ( 1 1) solves the − ± ß inequality. 1 x: 3x 3 2x 2 x 5 Case ³³ Ê ² ³ ± Ê ³ ± which is never true if 1 x, so no solution ³ here. In conclusion, x ( 5) ( 1 1).
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 8

Chapter 1 Solutions cont. - Section 1.3 Functions and Their...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online