This preview shows page 1. Sign up to view the full content.
Unformatted text preview: f uniformly on S and g n g uniformly on S . Then, 1) Show that, for any real number c , cf n cf uniformly on S . 2) Show that f n + g n f + g uniformly on S . Let S = R , f n ( x ) = x , f ( x ) = x , g n ( x ) = 1 /n and g ( x ) = 0. 3) Show that f n g n does not converge to fg uniformly on S. 3. Let S R and f, f n : S R . Suppose f n are all uniformly continuous on S and f n f uniformly on S . Show that f is uniformly continuous on S . Hint: See the proof of Thm 24.3. 1...
View Full
Document
 Fall '07
 Fukuda

Click to edit the document details