This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **18.06 Professor Edelman Quiz 3 December 5, 2011 Your PRINTED name is: Grading 1 2 3 4 Please circle your recitation: 1 T 9 2-132 Kestutis Cesnavicius 2-089 2-1195 kestutis 2 T 10 2-132 Niels Moeller 2-588 3-4110 moller 3 T 10 2-146 Kestutis Cesnavicius 2-089 2-1195 kestutis 4 T 11 2-132 Niels Moeller 2-588 3-4110 moller 5 T 12 2-132 Yan Zhang 2-487 3-4083 yanzhang 6 T 1 2-132 Taedong Yun 2-342 3-7578 tedyun 1 (24 pts.) Let A = . 5 0 0 . 5 . 9 0 . 1 1 . 1. (4 pts) True or False: The matrix A is Markov. 2. (6 pts) Find a vector x 6 = 0 and a scalar λ such that A T x = λx. 2 3. (4 pts) True or False: The matrix A is diagonalizable. (Explain brie y.) 4. (4 pts) True or False: One singular value of A is σ = 0 . (Explain brie y.) 5. (6 pts) Find the three diagonal entries of e At as functions of t. 3 This page intentionally blank. 4 2 (30 pts.) 1. (5 pts) An orthogonal matrix Q satis es Q T Q = QQ T = I. What are the n singular values of Q ?...

View
Full Document

- Fall '14
- Yeh
- Linear Algebra, pts, Singular value decomposition, Orthogonal matrix, Niels Moeller, Kestutis Cesnavicius