{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# ch03b - Section 3-10 3-117 a E(X = 300(0.4 = 120 V(X =...

This preview shows pages 1–4. Sign up to view the full content.

Section 3-10 3-117. a) E(X) = 300(0.4) = 120, V(X) = 300(0.4)(0.6) = 72 and 72 = σ X . Then, 0002 . 0 ) 54 . 3 ( 72 120 90 ) 90 ( = = Z P Z P X P b) ) 54 . 3 89 . 5 ( 72 120 90 72 120 70 ) 90 70 ( < = < < Z P Z P X P = 0.0002 – 0 = 0.0002 3-118. a) () () 93 7 99 1 100 0 9 . 0 1 . 0 7 100 ... 9 . 0 1 . 0 1 100 9 . 0 1 . 0 0 100 ) 8 ( + + + = < X P = 0.2061 b) E(X) = 10, V(X) = 100(0.1)(0.9) = 9 and σ X = 3. Then, 2524 . 0 ) 667 . 0 ( ) ( ) 8 ( 3 10 8 = < = < < Z P Z P X P c) 4971 . 0 ) 67 . 0 Z 67 . 0 ( P 3 10 12 Z 3 10 8 P ) 12 8 ( = < < = < < X P < < 3-119. Let X denote the number of defective chips in the lot. Then, E(X) = 1000(0.02) = 20, V(X) = 1000(0.02)(0.98) = 19.6. a) 1294 . 0 ) 13 . 1 Z ( P 1 ) 13 . 1 Z ( P 6 . 19 20 25 Z P ) 25 X ( P = = > = > > b) PX PZ () ( ) ( . 20 30 0 0 2 26 10 19 6 << ≅ << = . ) 4881 . 0 5 . 0 98809 . 0 ) 0 Z ( P ) 26 . 2 Z ( P = = < = 3-120. Let X = number of defective inspected parts E(X) = 100(0.08) = 8 V(X) = 100(0.08)(0.92) = 7.36 a) P(X < 8) = P(X 7) = = 0.4471 = 7 0 100 ) 92 . 0 ( ) 08 . 0 ( 100 i i i i b) 5 . 0 ) 0 ( 36 . 7 8 8 ) 8 ( = < = < < Z P Z P X P 3-121. Let X denote the number of original components that fail during the useful life of the product. Then, X is a binomial random variable with p = 0.005 and n = 2000. Also, E(X) = 2000(0.005) = 10 and V(X) = 2000(0.005)(0.995) = 9.95. 9441 . 0 055917 . 0 1 ) 59 . 1 ( 1 ) 59 . 1 ( 95 . 9 10 5 ) 5 ( = = < = = Z P Z P Z P X P . 3-122. Let X denote the number of particles in 10 of dust. Then, X is a Poisson random variable with cm 2 λ = 10(1000) = 10,000. Also, E(X) = λ = 10,000 and V(X) = λ 2 = 10 8 . (, ) ,, >≅ > => = 10 000 10 000 10 000 10 00 5 8 . 3-123. E(X) = 50(0.1) = 5 and V(X) = 50(0.1)(0.9) = 4.5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
a) PX PZ () (. ) . . ≤= ≤ ≅ =≤ 22 5 25 5 45 118 ) =− = 1 118 1 0881 0119 ) . . b) 0793 . 0 ) 41 . 1 Z ( P 5 . 4 5 2 Z P ) 2 X ( P = = c) . . . . . . . + + = 2 50 0 01 09 50 1 0109 50 2 0118 05 0 14 9 24 8 The probability computed using the continuity correction is closer. d) ) . . ) . ≤= ≤ ≅ ≤ =≤ = 10 105 5 2 59 0 995 e) ( . ) . . ) . <= ≤ ≅ ≤ 10 9 5 95 5 212 0 983 3-124. E(X) = 50(0.1) = 5 and V(X) = 50(0.1)(0.9) = 4.5 a) ) . . ) . ≥= ≥ ≅ =≥ −= 21 5 15 5 165 0 951 b) . ) . ≥≅ − = 2 1414 0 921 c) () () . . . <= = 50 0 50 1 01 0 9 0 966 0 9 The probability computed using the continuity correction is closer. d ) ) ) . = 6 55 0 24 0 4052 e ) ) ) . >= = 6 7 65 0 707 0 24 Section 3-11 3-125. a) P(X < 9, Y < 2.5) = P(X < 9) P(Y < 2.5) 2457 . 0 ) 97725 . 0 )( 25143 . 0 ( ) 2 Z ( P ) 67 . 0 Z ( P 25 . 2 5 . 2 Z P 5 . 1 10 9 Z P = = < < = < < = b) P(X > 8, Y < 2.25) = P(X > 8)P(Y < 2.25) 7641 . 0 ) 84134 . 0 )( 90824 . 0 ( ) 1 Z ( P )) 33 . 1 Z ( P 1 ( ) 1 Z ( P ) 33 . 1 Z ( P 25 . 2 25 . 2 Z P 5 . 1 10 8 Z P = = < < < > = < > = =
c) P(8.5 X 11.5, Y > 1.75) = P(8.5 X 11.5)P(Y > 1.75) 5743 . 0 ) 84134 . 0 )( 68268 . 0 ( )) 1 Z ( P 1 )( 1 Z 1 ( P ) 1 Z ( P ) 1 Z 1 ( P 25 . 2 75 . 1 Z P 5 . 1 10 5 . 11 Z 5 . 1 10 5 . 8 P = = < = > = > = d) P(X < 13, 1.5 Y 1.8) = P(X < 13)P(1.5 Y 1.8) 1848 . 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 21

ch03b - Section 3-10 3-117 a E(X = 300(0.4 = 120 V(X =...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online