x g x f x g x g x 2 2 2 2 2 5 1 1 5 10 1 x x x x x x x 5 2 g x lim x h x h lim

X g x f x g x g x 2 2 2 2 2 5 1 1 5 10 1 x x x x x x

This preview shows page 436 - 439 out of 640 pages.

x g x f x g x g x ( ) ( ) ( ) ( ) ( ) ( ) [ ( = ' ' ' )] ( ) ( )( ) ( ) ( 2 2 2 2 2 5 1 1 5 10 1 = ⋅ − + + − + = + + x x x x x x − + x 5 2 ) g x lim x h x h lim x h x h h h ' ( ) ( ) ( ) = + + − − + = − − + = 0 0 5 5 1 f x lim x h x h lim x hx h h h ' ( ) ( ) ( ) = + + − + = + + 0 2 2 0 2 1 1 2 2 2 0 2 2 = + = x h lim x h x h ( ) g x f x ( ) ( ) f x g x ( ) ( ) 015 Aplicando la fórmula: p x f x g x f x g ' ' ' ( ) ( ) ( ) ( ) = + ( ) ( ) ( ) ( ) ( ) x lim x h x h x x l h = = + + + 0 2 2 2 4 4 1 4 im x h x h lim x hx h x h h h 0 0 2 2 2 1 1 2 ( ) ( ) ( + + − + = = + + x x lim x h x h lim x h x h h + + + = = + + 1 4 2 2 0 0 ) ( ) ( ) ( 1 4 1 2 1 4 3 2 4 2 2 2 ) ( ) ( ) + = + + = + x x x x x x p x f x g x x x x x x p x ( ) ( ) ( ) ( )( ) ( ) = = + = + = 2 3 2 4 1 4 4 ' lim x h x h x h x x x h h 0 3 2 3 2 4 4 4 4 ( ) ( ) ( ) ( ) + + + + + = = + + + + + + lim x hx h x h x hx h x h h 0 3 2 2 3 2 2 3 3 2 4 4 4 x x x h lim hx h x h hx h h h h 3 2 0 2 2 3 2 4 4 3 3 2 4 + + = = + + + + = + + + + = = + lim x hx h x h x x h 0 2 2 2 3 3 2 4 3 2 4 ( ) 014 Derivada de una función
Image of page 436
437 Halla la derivada de las siguientes funciones. a) f ( x ) = 5 sen x + 3 cos x b) f ( x ) = (5 x 2 sen x ) + ( x cos x ) a) f ' ( x ) = 5 · cos x + 3 · ( sen x ) = 5 cos x 3 sen x b) f ' ( x ) = (5 · 2 x · sen x + 5 x 2 · cos x ) + (1 · cos x + x · ( sen x )) = = 10 x sen x + 5 x 2 cos x + cos x x sen x Obtén la derivada de estas funciones. a) f ( x ) = e x tg x b) f ( x ) = 3 x 2 arc s en x a) f ' ( x ) = e x · tg x + e x · (1 + tg 2 x ) = e x (1 + tg x + tg 2 x ) Halla la derivada de estas funciones aplicando la regla de la cadena. a) f ( x ) = ln ( cos x ) c) f ( x ) = ( x 4 + 2) 9 b) f ( x ) = cos (ln x ) d) f ( x ) = x Calcula la derivada de estas funciones. a) f ( x ) = sen c) f ( x ) = ln b) f ( x ) = 3 sen x 2 + 2 sen 2 x d) f ( x ) = f x e x x e x x x x ' ( ) = + ( ) = + + ( ) + ( ) 1 1 2 1 2 2 2 1 1 2 1 c) f x x x x x x ' ( ) ( ) ( ) ( ) ( ) = + + ⋅ − = 1 1 1 1 1 1 1 1 2 1 2 x 2 b) f x cos x x sen x cos x x cos x ' ( ) = + = + 3 2 2 2 6 4 2 2 sen x cos x a) f x cos x x x x x x ' ( ) ( ) ( ) ( ) = + + + = + 2 2 1 2 3 1 2 3 2 3 2 3 cos x x x x 2 2 3 2 3 + + e x + ( ) 1 2 1 1 + x x x x 2 3 + 021 d) f x x x x x x ' ( ) ( ) = + + + = = + + 1 2 1 1 2 2 1 6 2 1 3 3 3 1 2 2 3 x x x x 3 3 3 3 2 1 5 1 2 1 + = + + c) f x x x x x ' ( ) ( ) ( ) = + = + 9 2 4 36 2 4 8 3 3 4 8 b) f x sen x x ' ( ) (ln ) = − 1 a) f x cos x sen x tg x ' ( ) ( ) = ⋅ − = − 1 2 1 3 x + 020 b) f x x x ' ( ) = 6 1 1 2 019 018 10 SOLUCIONARIO
Image of page 437
438 Halla los intervalos de crecimiento y decrecimiento de las siguientes funciones. a) f ( x ) = x 2 6 x + 5 b) f ( x ) = 8 x + x 2 a) f ' ( x ) = 2 x 6 2 x 6 = 0 x = 3 La función es decreciente en ( , 3) y es creciente en (3, + ). b) f ' ( x ) = 8 + 2 x 8 + 2 x = 0 x = − 4 La función es decreciente en ( , 4) y es creciente en ( 4, + ). Determina los intervalos de crecimiento y los máximos y mínimos de estas funciones. a) f ( x ) = x 3 3 x b) f ( x ) = 2 x a) f ' ( x ) = 3 x 2 3 3 x 2 3 = 0 x = ± 1 La función es creciente en ( , 1) (1, + ) y es decreciente en ( 1, 1). Presenta un máximo en x = − 1 y un mínimo en x = 1.
Image of page 438
Image of page 439

You've reached the end of your free preview.

Want to read all 640 pages?

  • Winter '15
  • palmerdev

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask ( soon) You can ask (will expire )
Answers in as fast as 15 minutes
A+ icon
Ask Expert Tutors