200Chapter 5. Integration26.261(1)(2)ttdt+−∫Let2ut=−so13tu+=+,dudt=.Further when1t=,1u= −and2t=,0u=. Thus20661107610871(1)(2)(3)(3)3871756ttdtuu duuuduuu−−−+−=+=+⎛⎞=+⎜⎟⎜⎟⎝⎠=∫∫∫28.21lneedxxx⌠⎮⌡Letln,.dxux dux==If2,1, and if,2.xe uxeu====221211lnlnln 20.693eedudxxxuu====⌠⌠⎮⎮⌡⌡30.43/ 21(1)xdxx−⌠⎮⌡Let1,.2dxuxdux=−=If1,0, and if4,1.xuxu====43/ 213/ 20115/ 20(1)24545xdxuduxu−===⌠⎮⌡∫32.1311331133[4( )3 ( )]4( )3 ( )4( )3( )4(0)3(4)12−−−−−−=−=−=−= −∫∫∫∫∫fxg xdxfx dxg x dxfx dxg x dx34.3223( )( )5fx dxf x dx−−= −= −∫∫36.Since212331( )( )( )g x dxg x dxg x dx−−=+∫∫∫wehave221133( )( )( )246 .g x dxg x dxg x dx−−=−= −−= −∫∫∫38.[]1311332( )3 ( )2( )3( )2(0)3(4)12fxg xdxfx dxg x dx−−−+=+=+=∫∫∫40.4043/ 21/ 2045/ 23/ 20Area(1)()225364165327215x xdxxxdxxx=+=+=+=+=∫∫42.083Area92−=−∫dxxLetu= 9−2x, thendu=−2dx. Ifx=−8,u= 25 and ifx= 0,u= 9, so