{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

9 the constrained extrema of fxy subject to the

Info iconThis preview shows page 2. Sign up to view the full content.

View Full Document Right Arrow Icon
9. The constrained extrema of f(x,y) subject to the constraint g(x,y) = 0 will occur at a point where f (x 0 , y 0 ) = λ . g(x 0 , y 0 ) provided g(x 0 , y 0 ) is not 0 . We must also check the endpoints of g(x,y) = 0; and at the points where g= 0 or f = 0 , if these lie on g(x,y) = 0. 11. ∫∫ R f(x,y) dA = [a,b] { [g(x), h(x)] f(x,y).dy } dx = [c,d] { [p(y), q(y)] f(x,y).dx } dy ∫∫ R f(x,y) dA = [α,β] { [g(θ), h(θ)] f(r,θ) . r.dr } 12. Volume of the solid determined by z 1 (x,y) & z 2 (x,y) over the plane region R is given by Volume(G) = ∫∫ R { z 2 (x,y) - z 1 (x,y) } .dA . Area (R) = ∫∫ R 1 .dA . 13. Surface Area of the surface z = f(x,y) is given by: S = ∫∫ R {(f x ) 2 + (f y ) 2 + 1}. dA Surface Area of the surface r = x(u,v), y(u,v), z(u,v) is: ∫∫ R ||( r / u)×( r / v)|| . dA 14. Mass of the solid region G with density f(x,y,z) at x, y, z is given by. Mass(G) = ∫∫∫ G f(x,y,z) .dV . Volume (G) = ∫∫∫ G 1 .dV .
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}