The vacuum significantly reduces convective heat loss A fluid also called heat

The vacuum significantly reduces convective heat loss

This preview shows page 27 - 30 out of 117 pages.

The vacuum significantly reduces convective heat loss. A fluid (also called heat transfer fluid) passes through the receiver and becomes very hot. Common fluids are synthetic oil, molten salt and pressurized steam. The fluid containing the heat is transported to a heat engine where about a third of the heat is converted to electricity. Full- scale parabolic trough systems consist of many such troughs laid out in parallel over a large area of land. Since 1985 a solar thermal system using this principle has been in full operation in California in the United States. It is called the Solar Energy Generating Systems (SEGS) system. Other CSP designs lack this kind of long experience and therefore it can currently be said that the parabolic trough design is the most thoroughly proven CSP technology.
Image of page 27
Parabolic dish Solar Parabolic dish With a parabolic dish collector, one or more parabolic dishes concentrate solar energy at a single focal point, similar to the way a reflecting telescope focuses starlight, or a dish antenna focuses radio waves. This geometry may be used in solar furnaces and solar power plants. The shape of a parabola means that incoming light rays which are parallel to the dish's axis will be reflected toward the focus, no matter where on the dish they arrive. Light from the sun arrives at the Earth's surface almost completely parallel, and the dish is aligned with its axis pointing at the sun, allowing almost all incoming radiation to be reflected towards the focal point of the dish. Most losses in such collectors are due to imperfections in the parabolic shape and imperfect reflection. Losses due to atmospheric scattering are generally minimal. However, on a hazy or foggy day, light is diffused in all directions through the atmosphere, which significantly reduces the efficiency of a parabolic dish. In dish stirling power plant designs, a stirling engine coupled to a dynamo, is placed at the focus of the dish. This absorbs the energy focused onto it and converts it into electricity. Power tower A power tower is a large tower surrounded by tracking mirrors called heliostats . These mirrors align themselves and focus sunlight on the receiver at the top of tower, collected heat is transferred to a power station below. This design reaches very high temperatures. High temperatures are suitable for electricity generation using conventional methods like steam turbine or a direct high temperature chemical reaction such as liquid salt. By concentrating sunlight, current systems can get better efficiency than simple solar cells. A larger area can be covered by using relatively inexpensive mirrors rather than using expensive solar cells . Concentrated light can be redirected to a
Image of page 28
suitable location via optical fiber cable for such uses as illuminating buildings. Heat storage for power production during cloudy and overnight conditions can be accomplished, often by underground tank storage of heated fluids.
Image of page 29
Image of page 30

You've reached the end of your free preview.

Want to read all 117 pages?

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture