Note the correspondence between figure three and figure four.
When u is low in figure 3
(less than zero), lnwagerun is low (below the solid line) in figure four.
When u is high
(greater than zero) in figure three, lnwagerun is high (above the solid line) in figure four.
reg
lnwageran education
Source |
SS
df
MS
Number of obs =
19
-------------+------------------------------
F(
1,
17) =
1.44
Model |
1.54899602
1
1.54899602
Prob > F
=
0.2470
Residual |
18.3173689
17
1.07749229
R-squared
=
0.0780
-------------+------------------------------
Adj R-squared =
0.0237
Total |
19.866365
18
1.10368694
Root MSE
=
1.038
------------------------------------------------------------------------------
lnwageran |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
-------------+----------------------------------------------------------------
education |
.05213
.043478
1.20
0.247
-.0396006
.1438606
_cons |
4.906743
.4957256
9.90
0.000
3.860854
5.952633
The slope for this line is .05213, which implies that the return to education is 5.213% (see Wooldridge, p.
49, line 3.
Now let’s introduce a new value for the random component:
gen u2 = invnormal(uniform())
Note that the values of u and u2 are not equal
u
u2

Subscribe to view the full document.
.1952169
-.9470641
-1.23091
-.5522633
1.953314
.3275578
-.7849584
1.255616
-.6400359
-.036478
-.9740305
-.7476848
.7082468
1.534772
-.3281993
1.252978
-.3066868
1.081464
1.85042
-.8742716
.2078537
.3231856
.8249497
.6407216
-1.335853
.1043822
.9023688
-1.358528
-.6263756
-.2949743
-.1184899
-1.684372
-1.121178
.8746579
-.7535513
-.2219705
-1.787513
.0124836
Furthermore, they are not correlated:
. correlate u u2
(obs=19)
|
u
u2
-------------+------------------
u |
1.0000
u2 |
-0.0847
1.0000
Generate a new variable that incorporates the values of u2:
gen lnwageran2 = lnwage + u2
reg
lnwageran2 education
Source |
SS
df
MS
Number of obs =
19
-------------+------------------------------
F(
1,
17) =
3.90
Model |
3.4676034
1
3.4676034
Prob > F
=
0.0648
Residual |
15.1145584
17
.889091669
R-squared
=
0.1866
-------------+------------------------------
Adj R-squared =
0.1388
Total |
18.5821618
18
1.03234232
Root MSE
=
.94292
------------------------------------------------------------------------------
lnwageran2 |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
-------------+----------------------------------------------------------------
education |
.0779969
.0394944
1.97
0.065
-.0053291
.1613229
_cons |
4.861528
.4503058
10.80
0.000
3.911466
5.81159
Here we observe a point estimate of .0779969*100 = 7.7999% as the rate-of-return for an additional year of
education.

Note too that the confidence interval estimate for education extends from -.005 to .1613229.
This range
includes what we know to be the true value, .1.
Therefore our confidence interval estimate for
1
includes the true value of
1
, .1.
If we were to repeat this process 100 times, that is generate u3, u4…u100, and then run the regression
where the dependent variable is the sum of the error + lnwage, I would expect that 95 of the 100 confidence
interval estimates for
1
would include the true value, .1.

- Spring '08
- Sun