# 10 m f 100 n and θ 30º calculate the scalar product

• Notes
• 22

This preview shows page 13 - 18 out of 22 pages.

= 10 [m], F= 100 [N], and θ= 30º, calculate the scalar product. !r!F!r!F=rFcosθ=(10)(100)cos(30°)=866 [miN]!r!F= +r"F=[+(10)cos(30°)](100)=866 [miN]!r!F= +rF"=[+(100)cos(30°)](10)=866 [miN]θ !F!ryxzθ rr!r!Fθ OR FF!r!F+ r|| !Fr|| !F+ F|| !rF|| !r
An Example of Cross Product Given r= 10 [m], F= 100 [N], and θ= 30º, calculate the cross product . !r×!F!r×!F=rFsinθ=(10)(100)sin(30°)=500 [miN]θ !F!ryxzrF=[(10)sin(30°)](100)=500 [miN]rF=(10)[(100)sin(30°)]=500 [miN]OR !r×!F=500 (ˆz) = 500ˆz[miN] ²×Right-Hand Rule !r×!Fθ !F!rrθ r!θ !F!rFθ F!!r×!F=0 ˆx+0 ˆy500ˆz[miN]
:
8
1
0
0
Question #8 What is the value of the crossproduct: 3x+2y()×3z?0
Definition: Torque, moment or moment of force, is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Work and Torque !τ=!r×!FDefinition: A force is said to do work when it acts on a body so that there is a displacement of the point of application in the direction of the force.