104s11mnoans

(a 1 π 1 4(b √ 2 3 2 7(c 2 e ln 2 6(d 7 32 1 2

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (a) 1 π + 1 4 (b) √ 2 3 + 2 7 (c) 2 e + ln 2 6 (d) 7 32- 1 2 π (e) π 12 + √ 3 8 (f) cos(1 / 2) 2- 3 √ π 7. Evaluate integraldisplay 2 y 3 + y dy . (a) 2 ln( y 3 + y ) + C (b) ln parenleftbigg y 2 y 2 + 1 parenrightbigg + C (c) 1 y 2 + ln y + C (d) 1 ( y 3 + y ) 2 + C (e) ln(2 y 2 + 1) + C (f) 2 ln | y | - y + C 8. Evaluate the improper integral integraldisplay ∞ x 2 ( x 3 + 1) 3 dx . (a) 1 6 (b) π 2 (c) π 4 (d) √ π (e) √ 2 2 27 (f) It is divergent. 9. The curve defined by y = √ 1 + 2 x , between x = 1 and x = 3, is rotated about x-axis. Find the resulting surface area. (a) ln(2) + 128 π 5 (b) π 3 + e 2 (c) 6 π cos- 1 parenleftbigg 1 3 parenrightbigg (d) 4 + 20 π √ 3 (e) π + 1 √ 3 (f) 16 π 3 (2 √ 2- 1) 1 10. Consider the region in the first quadrant that lies below the graph of y = sin( x 2 ) + cos( x 2 ), to the left of x = radicalbig π/ 2. Let A be the area of this region. Then the x-coordinate of the center of mass of this region is (a) 1 A (b) 2 A (c) A √ 2 (d) π 3 (e) π 2 A (f) A √ π- 1 11. Suppose that a certain probability density function f ( x ) is given by: f ( x ) = Ax (1 +...
View Full Document

{[ snackBarMessage ]}

Page1 / 3

(a 1 π 1 4(b √ 2 3 2 7(c 2 e ln 2 6(d 7 32 1 2 π(e π...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online