C and b 3 c 2 so if we take c 2 we get the normal

This preview shows page 2 - 5 out of 7 pages.

2of7
[10]2.LetA=120030000000104120-11. Find a basis for each of the following subspaces:(i)nullspace ofA.(ii)row space ofA.(ii)column space ofA.Let’s row reduceA:120030000000104120-11R4-R1-→120030000000104000-1-2-→12003001040001200000.
3of7
3.ConsiderR3together with inner product<(x1, x2, x3),(y1, y2, y3)>= 2x1y1+x2y2+ 3x3y3.[5](a)Use the Gram-Schmidt procedure to find anorthonormalbasis forW=Span{(-1,1,0),(-1,1,2)}.[5](b)Find the orthogonal projection of (1,1,1) ontoW.

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture