Consider the case where all of the poles are real except for two
complex poles that are complex conjugates.
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
124 / 170

Inverse Z Transform For Systems With Complex Poles
Partial fraction expansion can be used, for this case, to expand
the transfer function
H
(
z
)
as
H
(
z
) =
N
1
X
m
=
1
F
m
(
z
) +
N
2
X
k
=
1
C
k
z
z
-
p
k
(130)
where all of the
C
k
and
p
k
are real and
F
m
(
z
) =
D
1
m
z
z
-
p
1
m
+
D
2
m
z
z
-
p
2
m
(131)
The constants
D
1
m
and
D
2
m
are complex conjugates and the
poles
p
1
m
and
p
2
m
are complex conjugates.
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
125 / 170

Inverse Z Transform For Systems With Complex Poles
The inverse Z Transform of
F
m
(
z
)
can be determined to obtain
f
m
(
n
) = [
D
1
m
(
p
1
m
)
n
+
D
2
m
(
p
2
m
)
n
]
u
(
n
)
(132)
The two complex conjugate poles,
p
1
m
and
p
2
m
, can be written in
complex exponential form as
p
1
m
=
e
α
+
j
ω
p
2
m
=
e
α
-
j
ω
(133)
Then,
f
m
(
n
)
can be written in the form
f
m
(
n
) =
h
D
1
m
e
(
α
+
j
ω
)
n
+
D
2
m
e
(
α
-
j
ω
)
n
i
(134)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
126 / 170

Inverse Z Transform For Systems With Complex Poles
However,
e
j
ω
n
=
cos
(
ω
n
) +
jsin
(
ω
n
)
e
-
j
ω
n
=
cos
(
ω
n
)
-
jsin
(
ω
n
)
(135)
Thus,
f
m
(
n
)
=
(
D
1
m
+
D
2
m
)
e
α
n
cos
(
ω
n
)
u
(
n
)
+
j
(
D
1
m
-
D
2
m
)
e
α
n
sin
(
ω
n
)
u
(
n
)
(136)
Observe that
D
1
m
+
D
2
m
=
2
<
e
(
D
1
m
)
D
1
m
-
D
2
m
=
2
j
=
m
(
D
1
m
)
(137)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
127 / 170

Inverse Z Transform For Systems With Complex Poles
Thus
f
m
(
n
)
=
2
<
e
(
D
1
m
)
e
α
n
cos
(
ω
n
)
u
(
n
)
-
2
=
m
(
D
1
m
)
e
α
n
sin
(
ω
n
)
u
(
n
)
(138)
f
m
(
n
)
can be further simplified by using the trigonometric identity
cos(
ω
n
+
φ
) = cos(
φ
) cos(
ω
n
)
-
sin(
φ
) sin(
ω
n
)
(139)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
128 / 170

Inverse Z Transform For Systems With Complex Poles
It follows that
f
m
(
n
)
can be written in the form
f
m
(
n
) =
Ae
α
n
cos(
ω
n
+
φ
)
(140)
where
φ
=
tan
-
1
=
m
(
D
1
m
)
<
e
(
D
1
m
)
A
=
2
q
=
m
(
D
1
m
)
2
+
<
e
(
D
1
m
)
2
(141)
Example 1.9 provides an example to illustrate this concept.
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
129 / 170

Complex Poles Inverse Z Transform Example
Example (1.9)
We wish to find the impulse response of the discrete time system
with its transfer function given by
H
(
z
) =
0
.
5276
z
3
+
1
.
5829
z
2
+
1
.
5829
z
+
0
.
5276
z
3
+
1
.
76
z
2
+
1
.
1829
z
+
0
.
2781
(142)
If
x
(
n
)
is an impulse, then
X
(
z
) =
∞
X
n
=
-∞
δ
(
n
)
z
-
n
=
1
(143)
Thus,
Y
(
z
) =
H
(
z
)
X
(
z
) =
H
(
z
)
(144)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
130 / 170

Complex Poles Inverse Z Transform Example
Example (1.9)
For convenience in obtaining the geometric series form, we
expand
H
(
z
)
z
=
0
.
5276
z
3
+
1
.
5829
z
2
+
1
.
5829
z
+
0
.
5276
z
(
z
3
+
1
.
76
z
2
+
1
.
1829
z
+
0
.
2781
)
=
D
1
z
-
p
1
+
D
2
z
-
p
2
+
C
1
z
-
p
3
+
C
2
z
(145)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
131 / 170

Complex Poles Inverse Z Transform Example
Example (1.9)
It follows that
p
1
=
-
0
.
6252
+
0
.
3935
j
p
2
=
-
0
.
6252
-
0
.
3935
j
=
p
*
1
p
3
=
-
0
.
5097
p
4
=
0
(146)
and
D
1
=
-
0
.
3221
+
0
.
1501
j
D
2
=
-
0
.
3221
-
0
.
1501
j
=
D
*
1
C
1
=
-
0
.
7254
C
2
=
1
.
8972
(147)
W. Alexander & C. Williams (NCSU)
FUNDAMENTAL DSP CONCEPTS
ECE 513, Fall 2019
132 / 170

Complex Poles Inverse Z Transform Example
Example (1.9)
Define
F
1
(
z
) =
D
1
z
z
-
p
1
+
D
2
z
z
-
p
2
(148)
Then, the above development can be used to find
f
1
(
n
)
, which is
the part of the impulse response corresponding to the complex
pair of poles,
p


You've reached the end of your free preview.
Want to read all 197 pages?
- Fall '11
- Cw