100%(1)1 out of 1 people found this document helpful
This preview shows page 2 - 6 out of 10 pages.
If{sn}converges, then{sn}is bounded.THEOREM 3.Let{sn}and{an}be sequences and suppose that there is a positive numberkand a positive integerNsuch that|sn| ≤k anfor alln > N.Ifan→0,thensn→0.14
Therefore,sn→0.CorollaryLet{sn}and{an}be sequences and lets∈R.Suppose that there is a positivenumberkand a positive integerNsuch that|sn-s| ≤k anfor alln > N.Ifan→0,thensn→s.Exercises 2.11. True – False.Justify your answer by citing a theorem, giving a proof, or giving a counter-example.(a) Ifsn→s,thensn+1→s.(b) Ifsn→sandtn→s,then there is a positive integerNsuch thatsn=tnfor alln > N.(c) Every bounded sequence converges(d) If to each>0there is a positive integerNsuch thatn > Nimpliessn<,thensn→0.(e) Ifsn→s,thensis an accumulation point of the setS={s1, s2,· · ·}.2. Prove thatlim3n+ 1n+ 2= 3.3. Prove thatlimsinnn= 0.4. Prove or give a counterexample:(a) If{sn}converges, then{|sn|}converges.(b) If{|sn|}converges, then{sn}converges.5. Give an example of:(a) A convergent sequence of rational numbers having an irrational limit.(b) A convergent sequence of irrational numbers having a rational limit.6. Give the first six terms of the sequence and then give the nthterm(a)s1= 1,sn+1=12(sn+ 1)(b)s1= 1,sn+1=12sn+ 1(c)s1= 1,sn+1= 2sn+ 17. use induction to prove the following assertions:(a) Ifs1= 1andsn+1=n+ 12nsn,thensn=n2n-1.(b) Ifs1= 1andsn+1=sn-1n(n+ 1),thensn=1n.15
8. Letrbe a real number,r= 0. Define a sequence{Sn}byS1=1S2=1 +rS3=1 +r+r2...Sn=1 +r+r2+· · ·+rn-1...(a) Supposer= 1. What isSnforSn= 1,2,3, . . .?(b) Supposer= 1. Find a formula forSn.9. Setan=1n(n+ 1), n= 1,2,3, . . .,and form the sequenceS1=a1S2=a1+a2S3=a1+a2+a3...Sn=a1+a2+a3+· · ·+an...Find a formula forSn.II.2.Supposesn→sandtn→t. Then:1.sn+tn→s+t.2.sn-tn→s-t.3.sntn→st.Special case:ksn→ksfor any numberk.4.sn/tn→s/tprovidedt= 0andtn= 0for alln.THEOREM 5.Supposesn→sandtn→t. Ifsn≤tnfor alln,thens≤t.16