2 in matrix form 2 4 1 1 1 b 1 0 g 0 1 3 5 2 4 y c g

• Homework Help
• 5

Course Hero uses AI to attempt to automatically extract content from documents to surface to you and others so you can study better, e.g., in search results, to enrich docs, and more. This preview shows page 2 - 4 out of 5 pages.

2
In matrix form:241±1±1±b10±g013524YCG35=24I0a±bT0035For both solution methods, we need the determinant of the coe¢ cient matrix:jAj=²²²²²²1±1±1±b10±g01²²²²²²= 1±b±g(a) The solution using matrix inversion is:24Y±C±G±35=241±1±1±b10±g0135°124I0a±bT0035The inverse is:A°1=adj(A)jAj=11±b±g24111b1±gbgg1±b35Thus, the solution is (after simplifying):24Y±C±G±35=11±b±g24111b1±gbgg1±b3524I0a±bT0035=264a°bT0+I01°b°g(1±g)a°bT0+I01°b°g±I0g³a°bT0+I01°b°g´375(b) Using Cramer±s rule:Y±=jA1jjAj=11±b±g²²²²²²I0±1±1a±bT010001²²²²²²=a±bT0+I01±b±gC±=jA2jjAj=11±b±g²²²²²²1I0±1±ba±bT00±g01²²²²²²= (1±g)a±bT0+I01±b±g±I0G±=jA3jjAj=11±b±g²²²²²²1±1I0±b1a±bT0±g00²²²²²²=gµa±bT0+I01±b±g

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 5 pages?

Course Hero member to access this document

Term
Spring
Professor
BBLECHA
Tags
Invertible matrix, San Francisco State University