1 sinh x 3 4 2 sinh x 4 3 3 cosh x 1 1 7 5 x 4 cosh x

This preview shows page 47 - 50 out of 56 pages.

We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Algebra and Trigonometry
The document you are viewing contains questions related to this textbook.
Chapter 5 / Exercise 14
Algebra and Trigonometry
Redlin/Stewart
Expert Verified
1. sinh x 3 4 2. sinh x 4 3 3. cosh x 1 1 7 5 , x 0 4. cosh x 1 5 3 , x 0 In Exercises 5–10, rewrite the expression in terms of exponentials and simplify the results as much as you can. Support your answers graphically. 5. 2 cosh ln x 6. sinh 2 ln x 7. cosh 5 x sinh 5 x 8. cosh 3 x sinh 3 x 9. sinh x cosh x 4 10. ln cosh x sinh x ln cosh x sinh x 11. Use the identities sinh x y sinh x cosh y cosh x sinh y cosh x y cosh x cosh y sinh x sinh y to show that (a) sinh 2 x 2 sinh x cosh x ; (b) cosh 2 x cosh 2 x sinh 2 x . 12. Use the definitions of cosh x and sinh x to show that cosh 2 x sinh 2 x 1. In Exercises 13–24, find the derivative of y with respect to the appropriate variable. 13. y 6 sinh 3 x 14. y 1 2 sinh 2 x 1 15. y 2 t tanh t 16. y t 2 tanh 1 t 17. y ln sinh z 18. y ln cosh z EXAMPLE 4 Using Table A6.6 Evaluate 1 0 3 2 dx 4 x 2 . SOLUTION Solve Analytically The indefinite integral is 3 2 dx 4 x 2 a 2 du u 2 u 2 x , du 2 dx , a 3 sinh 1 ( a u ) C Formula from Table A6.6 sinh 1 ( 2 x 3 ) C. Therefore, 1 0 3 2 dx 4 x 2 sinh 1 ( 2 x 3 ) ] 1 0 sinh 1 ( 2 3 ) sinh 1 0 sinh 1 ( 2 3 ) 0 0.98665. Support Numerically To five decimal places, NINT 2 3 4 x 2 , x , 0, 1 0.98665. Now try Exercise 37. Section A6 Exercises
We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Algebra and Trigonometry
The document you are viewing contains questions related to this textbook.
Chapter 5 / Exercise 14
Algebra and Trigonometry
Redlin/Stewart
Expert Verified
Section A6 Hyperbolic Functions 609 19. y sech u 1 ln sech u 20. y csch u 1 ln csch u 21. y ln cosh x 1 2 tanh 2 x 22. y ln sinh x 1 2 coth 2 x 23. y x 2 1 sech ln x ( Hint: Before differentiating, express in terms of exponentials and simplify.) 24. y 4 x 2 1 csch ln 2 x In Exercises 25–36, find the derivative of y with respect to the appropriate variable. 25. y sinh 1 x 26. y cosh 1 2 x 1 27. y 1 u tanh 1 u 28. y u 2 2 u tanh 1 u 1 29. y 1 t coth 1 t 30. y 1 t 2 coth 1 t 31. y cos 1 x x sech 1 x 32. y ln x 1 x 2 sech 1 x 33. y csch 1 ( 1 2 ) u 34. y csch 1 2 u 35. y sinh 1 tan x 36. y cosh 1 sec x , 0 x p 2 Verify the integration formulas in Exercises 37–40. 37. (a) sech x dx tan 1 sinh x C (b) sech x dx sin 1 tanh x C 38. x sech 1 x dx x 2 2 sech 1 x 1 2 1 x 2 C 39. x coth 1 x dx x 2 2 1 coth 1 x 2 x C 40. tanh 1 x dx x tanh 1 x 1 2 ln 1 x 2 C Evaluate the integrals in Exercises 41–50. 41. sinh 2 x dx 42. sinh 5 x dx 43. 6 cosh ( 2 x ln 3 ) dx 44. 4 cosh 3 x ln 2 dx 45. tanh 7 x dx 46. coth u 3 d u 47. sech 2 ( x 1 2 ) dx 48. csch 2 5 x dx 49. 50. Evaluate the integrals in Exercises 51–60 analytically and support with NINT. 51. ln 4 ln 2 coth x dx 52. ln 2 0 tanh 2 x dx 53. ln 2 ln 4 2 e u cosh u d u 54. ln 2 0 4 e u sinh u d u 55. p /4 p /4 cosh tan u sec 2 u d u 56. p 2 0 2 sinh sin u cos u d u 57. 2 1 cosh t ln t dt 58. 4 1 8 cosh x x dx 59. 0 ln 2 cosh 2 ( 2 x ) dx 60. ln 10 0 4 sinh 2 ( 2 x ) dx In Exercises 61 and 62, find the volume of the solid generated by revolving the shaded region about the x -axis. 61. 62. –ln 3 x y 1 ln 3 0 y sech x x y 1 1 0 y cosh x 2 2 3 y sinh x csch ln t coth ln t dt t sech t tanh t dt t
610 Appendices 63. Find the volume of the solid generated by revolving the shaded region about the line y 1.

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture