Is regressed on x p mx 0 this result is fundamental

This preview shows page 19 - 27 out of 27 pages.

 is regressed on  X p MX  =  0  (This result is fundamental!)       How do we interpret this result in terms of residuals?       When a column of X is regressed on X, we get a   perfect fit and zero residuals. p (Therefore)   My   =   MXb  +  Me  =  Me   =         (You should be able to prove this. p y = Py + My, P = X ( X’X )-1 X’ = (I - M).              PM = MP = 0. p Py  is the projection of  y  into the column space of  X .   ™    18/26
Image of page 19

Subscribe to view the full document.

Part 3: Least Squares Algebra The M Matrix p M = I- X(X’X)-1X’  is an nxn matrix p M  is symmetric –  M  =  M p M  is idempotent –  M * M  =  M     (just multiply it out) p M  is singular –  M -1 does not exist.     (We will prove this later as a side result in  another derivation.) ™    19/26
Image of page 20
Part 3: Least Squares Algebra Results when X Contains a Constant Term p X  = [ 1 , x 2,…, x K] p The first column of  X  is a column of ones p Since  X’e  =  0 x1’e  = 0 – the residuals sum to zero. ™    20/26 = = = = = = + n i i=1 Define  [1,1,...,1] '  a column of n ones  =   y ny implies (after dividing by n) y    (the regression line passes through the means) These do not apply if the model has no y Xb e i i'y i'y i'Xb + i'e = i'Xb x b  constant term.
Image of page 21

Subscribe to view the full document.

Part 3: Least Squares Algebra Least Squares Algebra ™    21/26
Image of page 22
Part 3: Least Squares Algebra Least Squares ™    22/26
Image of page 23

Subscribe to view the full document.

Part 3: Least Squares Algebra Residuals ™    23/26
Image of page 24
Part 3: Least Squares Algebra Least Squares Residuals ™    24/26
Image of page 25

Subscribe to view the full document.

Part 3: Least Squares Algebra Least Squares Algebra-3 M is nxn potentially huge ™    25/26 I X X X X M X e
Image of page 26
Part 3: Least Squares Algebra Least Squares Algebra-4 MX   =     26/26
Image of page 27
  • Fall '10
  • H.Bierens
  • Econometrics, Yi, Linear least squares, Σi, Stern School of Business, Squares Algebra, Professor William Greene

{[ snackBarMessage ]}

Get FREE access by uploading your study materials

Upload your study materials now and get free access to over 25 million documents.

Upload now for FREE access Or pay now for instant access
Christopher Reinemann
"Before using Course Hero my grade was at 78%. By the end of the semester my grade was at 90%. I could not have done it without all the class material I found."
— Christopher R., University of Rhode Island '15, Course Hero Intern

Ask a question for free

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern