+
÷
f
0
0
gh
m
=
+
+
(
29
2
2
2
3
1
1
0
f
f
f
0
f
2
4
4
or
gh
v
v
v
g h
h
+
=
=

The final translational speed of the frozen juice can is
(
29
(
29
(
29
(
29
2
0
f
0
f
2
f
f
4
9.80 m/s
3.7 m
4
4
or
7.0 m/s
3
3
3
g h
h
g h
h
v
v


=
=
=
=
55.
REASONING AND SOLUTION
The only force that does work on the cylinders as they
move up the incline is the conservative force of gravity; hence, the total mechanical energy
is conserved as the cylinders ascend the incline. We will let
h
= 0 m on the horizontal plane
at the bottom of the incline.
Applying the principle of conservation of mechanical energy to
the solid cylinder, we have
2
2
1
1
s
0
s
0
2
2
mgh
mv
I
ϖ
=
+
(1)
where, from Table 9.1,
2
1
s
2
I
mr
=
. In this expression,
0
v
and
0
ϖ
are the initial translational
and rotational speeds, and
s
h
is the final height attained by the solid cylinder.
Since the
cylinder rolls without slipping, the rotational speed
0
ϖ
and the translational speed
0
v
are
related according to Equation 8.12,
0
0
/
v
r
ϖ
=
. Then, solving Equation (1) forsh, we obtain
3
4
v
v
h
h
3/4
56.
REASONING
a. The kinetic energy of the rolling wheel is the sum of its translational
(
29
2
1
2
mv
and
rotational
(
29
2
1
2
I
ϖ
kinetic energies. In these expressions
m
and
I
are, respectively, the mass
and moment of inertia of the wheel, and
v
and
ϖ
are, respectively, its linear and angular
speeds. The sliding wheel only has translational kinetic energy, since it does not rotate.
b. As the wheels move up the incline plane, the total mechanical energy is conserved, since
only the conservative force of gravity does work on each wheel. Thus, the initial kinetic
energy at the bottom of the incline is converted entirely into potential energy when the
wheels come to a momentary halt. The potential energy PE is given by PE =
mgh
(Equation 6.5), where
h
is the height of the wheel above an arbitrary zero level.
SOLUTION
a. Since the rolling wheel is a disk, its moment of inertia is
2
1
2
=
I
mR
(see Table 9.1),
where
R
is the radius of the disk. Furthermore, its angular speed
ϖ
is related to the linear
speed
v
of its center of mass by Equation 8.12 as
ϖ
=
v
/
R
. Thus, the total kinetic energy of
the rolling wheel is
The kinetic energy of the sliding wheel is
Rolling
Wheel
(
29
(
29
(
29
2
2
2
2
2
1
1
1
1
1
2
2
2
2
2
2
2
3
3
4
4
KE =
+
+
2.0 kg
6.0 m/s
54 J
v
mv
I
mv
mR
R
mv
ϖ
=
÷
=
=
=
Sliding
Wheel
(
29
(
29
2
2
1
1
2
2
KE =
2.0 kg
6.0 m/s
36 J
mv
=
=
223
ROTATIONAL DYNAMICS
b. As each wheel rolls up the incline, its total mechanical energy is conserved. The initial
kinetic energy KE at the bottom of the incline is converted entirely into potential energy PE
when the wheels come to a momentary halt. Thus, the potential energies of the wheels have
the values calculated in part a for the total kinetic energies.
You've reached the end of your free preview.
Want to read all 63 pages?
 Spring '11
 rollino
 Physics, Acceleration, Angular Momentum, Force, Moment Of Inertia, lever arm