FA Nm 2 1 98 1674 004 5810 5 32510 7 2 196 1686 008 1210 4 64910 7 3 294 1696

# Fa nm 2 1 98 1674 004 5810 5 32510 7 2 196 1686 008

This preview shows page 1 - 4 out of 4 pages.

F/A (N/m 2 ) 1 9.8 16.74 -0.04 -5.8*10 -5 3.25*10 7 2 19.6 16.86 0.08 1.2*10 -4 6.49*10 7 3 29.4 16.96 0.18 2.6*10 -4 9.74*10 7 4 39.2 17.08 0.30 4.3*10 -4 1.31*10 6 5 49 17.23 0.45 6.5*10 -4 1.62*10 6 6 58.8 17.31 0.53 7.7*10 -4 1.95*10 6 7 68.6 17.49 0.71 1.03*10 -3 2.27*10 6
0 0 0 0 0 0 0.01 0 50000000 100000000 150000000 200000000 250000000 Stress vs Strain Strain Stress Table II Weight m (kg) Applied Force F=mg (N) Reading of the Micrometer Screw L 1 (mm) Δ L=L 1 -L 0 (mm) Strain Δ L/L Stress F/A (N/m 2 ) 1 68.6 17.49 0.71 1.03*10 -3 2.27*10 6 2 58.8 17.34 0.56 8.1*10 -4 1.95*10 6 3 49 17.25 0.47 6.8*10 -4 1.62*10 6 4 39.2 17.14 0.36 5.2*10 -4 1.31*10 6 5 29.4 17.03 0.25 3.6*10 -4 9.74*10 7 6 19.6 16.91 0.13 1.9*10 -4 6.49*10 7 7 9.8 16.78 0 0 3.25*10 7
0 0 0 0 0 0 0 0 50000000 100000000 150000000 200000000 250000000 Stress vs Strain Stress Discussion: 1. When the elastic limit is not exceeded, the deformation is recoverable so comparing both cases of increasing and decreasing the hanging weights; the strain is the same for the stress, so the Young’s Modulus is the same for both cases. This reflects in data tables 1 and 2. For example, in table 1 (adding weight) for 4kg the stress is 1.31*10 6 N/m 2 and the strain is 5.2*10 -4 N/m 2 , when comparing these results to table 2 (removing weight) the results for stress and strain are the exact same. 2. In both plots, some of the data points fall in a straight line. Some factors that would cause the deviation from a straight line would be not accurately measuring Δ L and L, and also the precision of the lab equipment.

#### You've reached the end of your free preview.

Want to read all 4 pages?