lim x 7 6 2 x 14 p lim x 1 3 3 x q lim x x 4 10 4 x 3 x r lim x 3 radicalbigg x

# Lim x 7 6 2 x 14 p lim x 1 3 3 x q lim x x 4 10 4 x 3

This preview shows page 2 - 3 out of 3 pages.

lim x 7 6 2 x - 14 (p) lim x 1 - 3 - 3 x (q) lim x →∞ x 4 - 10 4 x 3 + x (r) lim x →-∞ 3 radicalbigg x - 3 5 - x (s) lim x →∞ 3 x 3 + x 2 - 2 x 2 + x - 2 x 3 + 1 (t) lim x →∞ x + 5 2 x 2 + 1 (u) lim x →-∞ cos parenleftbigg x 5 + 1 x 6 + x 5 + 100 parenrightbigg (v) lim x 2 2 x x 2 - 4 (w) lim x →- 1 3 x x 2 + 2 x + 1 (x) lim x →- 1 x 2 - 25 x 2 - 4 x - 5 (y) lim x 3 x 2 - 5 + 2 x - 3 (z) lim x 0 2 x + sin( x ) x 4 (A) lim x 1 - 1 x - 1 + e x 2 (B) lim x →∞ 2 x 2 - 3 x (C) lim x 0 x + 2 - 2 - x x (D) lim x 0 + e x 1 + ln( x ) (E) lim x →∞ x 2 + 1 - 2 x (F) lim x 1 3 x - 1 x - 1
4. Find the following limits involving absolute values. (a) lim x 1 x 2 - 1 | x - 1 | (b) lim x →- 2 1 | x + 2 | + x 2 (c) lim x 3 - x 2 | x - 3 | x - 3 5. Find the value of the parameterkto make the following limit exist and be finite.What is then the value of the limit? 6. Answer the following questions for the piecewise defined function f ( x ) described on the right hand side. (a) f (1) = (b) lim x 0 f ( x ) = (c) lim x 1 f ( x ) = f ( x ) = braceleftBigg sin( πx ) for x < 1 , 2 x 2 for x > 1 . 7. Answer the following questions for the piecewise defined function f ( t ) described on the right hand side. (a) f ( - 3 / 2) = (b) f (2) = (c) f (3 / 2) = (d) lim t →- 2 f ( t ) = (e) lim t →- 1 + f ( t ) = (f) lim t 2 f ( t ) = (g) lim t 0 f ( t ) = f ( t ) = t 2 for t < - 2 t + 6 t 2 - t for - 1 < t < 2 3 t - 2 for t 2

#### You've reached the end of your free preview.

Want to read all 3 pages?

• Winter '15
• Aisha
• Calculus, Limits, Limit, lim, Continuous function