13 3322 Reduced cycle amplification The next step is called reduced cycle

13 3322 reduced cycle amplification the next step is

This preview shows page 13 - 16 out of 22 pages.

13
Image of page 13
3.3.2.2. Reduced cycle amplification: The next step is called reduced cycle amplification. During this step, sequences for primer binding, indices, and terminal sequences are added. Indices are usually six base pairs long and are used during DNA sequence analysis to identify samples. Indices allow for up to 96 different samples to be run together. During analysis, the computer will group all reads with the same index together. The terminal sequences are used for attaching the DNA strand to the flow cell. Illumina uses a "sequence by synthesis" approach. This process takes place inside of an acrylamide-coated glass flow cell. The flow cell has oligonucleotides (short nucleotide sequences) coating the bottom of the cell, and they serve to hold the DNA strands in place during sequencing. The oligos match the two kinds of terminal sequences added to the DNA during reduced cycle amplification. As the DNA enters the flow cell, one of the adapters attaches to a complementary oligo. 3.3.2.3. Bridge amplification: Once attached, cluster generation can begin. The goal is to create hundreds of identical strands of DNA. Some will be the forward strand; the rest, the reverse. Clusters are generated through bridge amplification. Polymerases move along a strand of DNA, creating its complementary strand. The original strand is washed away, leaving only the reverse strand. At the top of the reverse strand there is an adapter sequence. The DNA strand bends and attaches to the oligo that is complementary to the top adapter sequence. Polymerases attach to the reverse strand, and its complementary strand (which is 14
Image of page 14
identical to the original) is made. The now double stranded DNA is denatured so that each strand can separately attach to an oligonucleotide sequence anchored to the flow cell. One will be the reverse strand; the other, the forward. This process is called bridge amplification, and it happens for thousands of clusters all over the flow cell at once. 3.3.2.4. Clonal amplification Over and over again, DNA strands will bend and attach to oligos. Polymerases will synthesize a new strand to create a double stranded segment, and that will be denatured so that all of the DNA strands in one area are from a single source (clonal amplification). Clonal amplification is important for quality control purposes. If a strand is found to have an odd sequence, then scientists can check the reverse strand to make sure that it has the complement of the same oddity. The forward and reverse strands act as checks to guard against artifacts. Because Illumina sequencing uses polymerases, base substitution errors have been observed, especially at the 3' end. Paired end reads combined with cluster generation can confirm an error took place. The reverse and forward strands should be complementary to each other, all reverse reads should match each other, and all forward reads should match each other. If a read is not similar enough to its counterparts (with which it should be a clone), an error may have occurred. A minimum threshold of 97% similarity has been used in some labs' analyses 3.3.2.5. Sequence by synthesis
Image of page 15
Image of page 16

You've reached the end of your free preview.

Want to read all 22 pages?

  • Fall '17
  • Dr. Sadia
  • DNA, Test, DNA sequencing, Illumina, NGS, Sequencing Technology

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture