# B î î b œ ð ñ œ œ î ðb ñ b this is so that the

• 525
• 100% (8) 8 out of 8 people found this document helpful

Course Hero uses AI to attempt to automatically extract content from documents to surface to you and others so you can study better, e.g., in search results, to enrich docs, and more. This preview shows page 325 - 327 out of 525 pages.

:B:Î#-:Î#:B""##/† /.- .: œ/† Ð"  /Ñ .:.œ/.: /.: œ " !!:Î#:ÐB Ñ"""###B""#This is, so that the density function ofisJÐBÑ\\.Answer:B0ÐBÑ œÒ" Ó œ\."#.B#B"Ð#B"Ñ#16.Sincehas a uniform distribution on the interval from 8 to 12,'s distribution function isXXJ Ð>Ñ œ TÒX Ÿ >Ó œTÒX   >Ó œ) Ÿ > Ÿ "#X>)"#>"#)"#),and, for.;V œJ Ð<Ñ œ TÒV Ÿ <Ó œ TÒŸ <Ó œ TÒX  Ó œœ \$ Þ"!"!"!#Þ&XX<"#)<"#V"!<The density function ofis.V0 Ð<Ñ œ J Ð<Ñ œJ Ð<Ñ œÒ\$ Ó œVVVw..#Þ&#Þ&.<.<<<#Alternatively,for.0 Ð>Ñ œ) Ÿ > Ÿ "#V œœ 1ÐXÑ p X œœ 2ÐVÑX""!"!%XV.Answer:Ep 0 Ð<Ñ œ 0 Ð2Ð<ÑÑ † l2 Ð<Ñl œ† ll œVXw""!#Þ&%<<##17.The standard approximation to the sum (total) of a collection of independent random variables isthe normal approximation.The total contribution is, the sum of theX œ G  G  â  G"##!#&2025 contributions.is the amount of the -th contribution, the's are mutually independent,G3G33and each has meanand variance.IÒG Ó œ \$"#&Z +<ÒG Ó œ Ð#&!Ñ33#The mean and variance ofareandXIÒXÓ œIÒG Ó œ Ð#!#&ÑÐ\$"#&Ñ œ 'ß \$#)ß "#&3œ"#!#&3.Z +<ÒXÓ œZ +<ÒG Ó œ Ð#!#&ÑÐ#&! Ñ œ "#'ß &'#ß &!!3œ"#!#&3#We will denote the 90th percentile ofby .We find the approximate 90th percentile ofbyX:Xapplying the normal approximation to.We wish to findso that.X:TÒX Ÿ :Ó œ Þ*We standardize the probability:.TÒX Ÿ :Ó œ TÒŸÓ œ Þ*!X'ß\$#)ß"#&:'ß\$#)ß"#&"#'ß&'#ß&!!"#'ß&'#ß&!!
316PROBLEM SET 9©ACTEX 2015SOA Exam P - Probability17. continuedX'ß\$#)ß"#&"#'ß&'#ß&!!is approximately standard normal (mean 0, variance 1), so that:'ß\$#)ß"#&"#'ß&'#ß&!!is the 90-th percentile of the standard normal distribution.From the table for thestandard normal distribution, we see that(.Therefore we haveF"Þ#)#Ñ œ Þ*!:'ß\$#)ß"#&"#'ß&'#ß&!!œ "Þ#)#: œ 'ß \$%#ß &%(Þ&, from which we get.Answer:C18.For policyholder , letbe the number of claims filed in the year,.3\3 œ "ß #ß ÞÞÞß "#&!3Eachis Poisson with a mean of 2, and therefore has variance of 2 also;,\IÒ\ Ó œ #33.The total number of claims in the year is.Since the's are mutuallyZ +<Ò\ Ó œ #X œ\\3333œ""#&!independent, the distribution ofis approximately normal.The mean ofisXX, and the variance ofisIÒXÓ œ IÒ\ Ó œIÒ\ Ó œ Ð"#&!ÑÐ#Ñ œ #&!!X3œ"3œ""#&!"#&!33(since the's are independent, thereZ +<ÒXÓ œ Z +<Ò\ Ó œZ +<Ò\ Ó œ Ð"#&!ÑÐ#Ñ œ #&!!\3œ"3œ""#&!"#&!333are no covariances between's).We wish to find, by using the normal\TÒ#%&! Ÿ X Ÿ #'!!Ó3approximation for.Applying the normal approximation we getXTÒ#%&! Ÿ X Ÿ #'!!Ó œ TŸŸ#%&!IÒXÓXIÒXÓ#'!!IÒXÓZ +<ÒXÓZ +<ÒXÓZ +<ÒXÓœ TŸŸÓ œ TÒ  " Ÿ ^ Ÿ ##%&!#&!!X#&!!#'!!#&!!#&!!#&!!#&!!(from the normal theœÐ#Ñ  Ò" Ð"ÑÓ œ Þ*((#  Ð"  Þ)%"\$Ñ œ Þ)")&FFtable provided with the exam).Answer:B19.The sum of independent Poisson random variables is also Poisson, so that the number of claimsoccurring in a 5 day week has a Poisson distribution with 6 claims expected.ThenTÒ\   \$Ó œ "  TÒ\ œ !Ó  TÒ\ œ "Ó  TÒ\ œ #Ó. Answer:Cœ "  / / /œ "  Þ!'#! œ Þ*\$)'''''"x#x#20.Letrepresent the time until a catastrophe occurs on policy , and letrepresent the time until theX3X3first catastrophe occurs.ThenAllTÒX  >Ó œ TÒX  >Ó œ TÒÐX >Ñ ∩ ÐX >Ñ ∩ â ∩ ÐX >ÑÓ3"#8(this last equality follows from the independenceœ TÒX >Ó † TÒX >ÓâTÒX >Ó"#8of the's).From the exponential distribution, we have, so thatXTÒX  >Ó œ /33>Îα, thushas an exponential distribution with mean. Answer:BTÒX  >Ó œ Ð/Ñœ /XÎ8>Î8>8Îααα

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 525 pages?

Course Hero member to access this document

Term
Fall
Professor
NoProfessor
Tags
Probability theory, B