Econometrics-I-8

# Relationship is f 1 df t2df a linear function of

• Notes
• 51

This preview shows page 41 - 50 out of 51 pages.

Relationship is F [ 1, d.f.] = t2[d.f.] A linear function of coefficients equals a particular value (linear function of coefficients - value)2 F = ---------------------------------------------------- Variance of linear function Note square of distance in numerator Suppose linear function is k wk bk Variance is kl wkwl Cov[bk,bl] This is the Wald statistic. Also the square of the somewhat familiar t statistic. Several linear functions. Use Wald or F. Loss of fit measures may be easier to compute. ™    40/50 Subscribe to view the full document.

Part 8: Hypothesis Testing Hypothesis Test: Sum of Coefficients = 1? ---------------------------------------------------------------------- Ordinary least squares regression ............ LHS=LG Mean = 5.39299 Standard deviation = .24878 Number of observs. = 36 Model size Parameters = 9 Degrees of freedom = 27 Residuals Sum of squares = .00855 <******* Standard error of e = .01780 <******* Fit R-squared = .99605 <******* Adjusted R-squared = .99488 <******* --------+------------------------------------------------------------- Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X --------+------------------------------------------------------------- Constant| -6.95326*** 1.29811 -5.356 .0000 LY| 1.35721*** .14562 9.320 .0000 9.11093 LPG| -.50579*** .06200 -8.158 .0000 .67409 LPNC| -.01654 .19957 -.083 .9346 .44320 LPUC| -.12354* .06568 -1.881 .0708 .66361 LPPT| .11571 .07859 1.472 .1525 .77208 LPN| 1.10125*** .26840 4.103 .0003 .60539 LPD| .92018*** .27018 3.406 .0021 .43343 LPS| -1.09213*** .30812 -3.544 .0015 .68105 --------+------------------------------------------------------------- ™    41/50 Part 8: Hypothesis Testing Hypothesis Test: Sum of Coefficients Do the three aggregate price elasticities sum to zero? H0 :β7 + β8 + β9 = 0 R = [0, 0, 0, 0, 0, 0, 1, 1, 1], q =  Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X --------+------------------------------------------------------------- LPN| 1.10125*** .26840 4.103 .0003 .60539 LPD| .92018*** .27018 3.406 .0021 .43343 LPS| -1.09213*** .30812 -3.544 .0015 .68105 ™    42/50 Subscribe to view the full document.

Part 8: Hypothesis Testing Wald Test ™    43/50 Part 8: Hypothesis Testing Using the Wald Statistic --> Matrix ; R = [0,1,0,0,0,0,0,0,0 / 0,0,1,0,0,0,0,0,0]\$ --> Matrix ; q = [1/-1]\$ --> Matrix ; list ; m = R*b - q \$ Matrix M has 2 rows and 1 columns. 1 +-------------+ 1| .35721 2| .49421 +-------------+ --> Matrix ; list ; vm = R*varb*R' \$ Matrix VM has 2 rows and 2 columns. 1 2 +-------------+-------------+ 1| .02120 .00291 2| .00291 .00384 +-------------+-------------+ --> Matrix ; list ; w = m'<vm>m \$ Matrix W has 1 rows and 1 columns. 1 +-------------+ 1| 63.55962 +-------------+ Joint hypothesis: b(LY)   =   1 b(LPG)   =  -1 ™    44/50 Subscribe to view the full document.

Part 8: Hypothesis Testing Application: Cost Function ™    45/50 Part 8: Hypothesis Testing Regression Results ---------------------------------------------------------------------- Ordinary least squares regression ............ LHS=C Mean = 3.07162 Standard deviation = 1.54273 Number of observs. = 158 Model size Parameters = 9 Degrees of freedom = 149 Residuals Sum of squares = 2.56313 Standard error of e = .13116 Fit R-squared = .99314 Adjusted R-squared = .99277 --------+------------------------------------------------------------- Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X --------+------------------------------------------------------------- Constant| 5.22853 3.18024 1.644 .1023 K| -.21055 .21757 -.968 .3348 4.25096 L| -.85353*** .31485 -2.711 .0075 8.97280 F| .18862 .20225 .933 .3525 3.39118 Q| -.96450*** .36798 -2.621 .0097 8.26549 Q2| .05250*** .00459 11.430 .0000 35.7913 QK| .04273 .02758 1.550 .1233 35.1677 QL| .11698*** .03728 3.138 .0021 74.2063 QF| .05950** .02478 2.401 .0176 28.0108 --------+------------------------------------------------------------- Note: ***, **, * = Significance at 1%, 5%, 10% level. ---------------------------------------------------------------------- ™    46/50 Subscribe to view the full document.

Part 8: Hypothesis Testing Price Homogeneity: Only Price Ratios Matter β2 + β3 + β4 = 1. β7 + β8 + β9 = 0. ---------------------------------------------------------------------- Linearly restricted regression .................... LHS=C Mean = 3.07162 Standard deviation = 1.54273 Number of observs. = 158 Model size Parameters = 7 Degrees of freedom = 151 Residuals Sum of squares = 2.85625 Standard error of e = .13753 Fit R-squared = .99236 Restrictns. F[ 2, 149] (prob) = 8.5(.0003) Not using OLS or no constant. Rsqrd & F may be < 0 --------+------------------------------------------------------------- Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X --------+------------------------------------------------------------- Constant| -7.24078*** 1.01411 -7.140 .0000 K| .38943** .16933 2.300 .0228 4.25096 L| .19130 .19530 .979 .3289 8.97280 F| .41927** .20077 2.088 .0385 3.39118 Q| .45889*** .12402 3.700 .0003 8.26549 Q2| .06008*** .00441 13.612 .0000 35.7913 QK| -.02954 .02125 -1.390 .1665 35.1677 QL| -.00462 .02364 -.195 .8454 74.2063 QF| .03416 .02489 1.373 .1720 28.0108 --------+------------------------------------------------------------- ™    47/50 Part 8: Hypothesis Testing Imposing the Restrictions Alternatively, compute the restricted regression by converting to price ratios and Imposing the restrictions directly. This is a regression of log(c/pf) on log(pk/pf), log(pl/pf) etc. Subscribe to view the full document. {[ snackBarMessage ]}

## Get FREE access by uploading your study materials

Upload your study materials now and get free access to over 25 million documents.

Upload now for FREE access Or pay now for instant access ###### "Before using Course Hero my grade was at 78%. By the end of the semester my grade was at 90%. I could not have done it without all the class material I found."
— Christopher R., University of Rhode Island '15, Course Hero Intern

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern