Chapter 10.Partial Differential Equations of First Order61(c)z=p2+q2+1(d)z(p2+q2+1)=1(e)4(z3+1)=9z4pq(f)q2=p2z2(1-p2)(g)p2z2+q2=1(h)9(p2z+q2)=4Ans.(a)4(a2+1)z=(x+ay+b)2(b)2√z=√a(x+ay+b)(c)√a2+1 cosh-1z=x+ay+b(d)(a2+1)(1-z2)=(x+ay+b)2(e)a2(z3+1)=(x+a2y+b)2(f)z=a2+(x+a2y+b)2(g)z2√z2+a2)+a2sinh-1(z/a)=x+ay+b(h)(z+a)3/2=x+ay+bTYPE 3: Separable Equations of the formConsider an equation of the formf(p,x)=g(q,y).(10.5.13)For this, the Charpit’s auxiliary equations reduce todxfp=dy-gq=dzpfp-qgq=dp-fx=dq-gy·From these, we have an ordinary differential equation:dpdx+fxfp=0, which can be written asfpdp+fxdx=0ordf(p,x)=0.Integrating this total differential, we get the solutionf(p,x)=a.Using this in (10.5.13),f(p,x)=a,g(q,y)=a.Solving these forpandq,p=μ(x,a),q=ν(y,a).(10.5.14)Using (10.5.14) in (10.4.4),dz=μ(x,a)dx+ν(y,a)dy,which on integration gives the complete integral of (10.5.13) asz=„μ(x,a)dx+„ν(y,a)dy+b.(10.5.15)