These data are required to satisfy a long list of coherence diagrams, see [
55
, Ap-
pendix C] for details.
Definition A.24.
A
symmetric monoidal 2-functor
between two symmetric monoidal
bicategories
B
and
B
0
consists of a 2-functor
H
:
B
-→
B
0
of the underlying bicat-
egories together with the following data:
(a) Equivalence natural 2-transformations
3
χ
:
⊗
0
◦
(
H
(
·
)
× H
(
·
)
)
=
⇒ H ◦ ⊗
and
ι
: 1
0
=
⇒ H
(1)
, where here we consider
1
as a 2-functor from the bicategory
with one object, one 1-morphism and one 2-morphism to
B
.
(b) The three invertible modifications
H
(
a
)
⊗
0
(
H
(
b
)
⊗
0
H
(
c
)
)
H
(
a
)
⊗
0
H
(
b
⊗
c
)
(
H
(
a
)
⊗
0
H
(
b
)
)
⊗
0
H
(
c
)
H
(
a
⊗
(
b
⊗
c
)
)
H
(
a
⊗
b
)
⊗
0
H
(
c
)
H
(
(
a
⊗
b
)
⊗
c
)
id
⊗
0
χ
χ
α
0
χ
⊗
0
id
χ
H
(
α
)
Ω
(A.25)
3
We fix again adjoint inverses and the adjunction data.
152

Chapter A: Symmetric monoidal bicategories
H
(1)
⊗
0
H
(
a
)
H
(1
⊗
a
)
1
0
⊗
0
H
(
a
)
H
(
a
)
χ
H
(
λ
)
ι
⊗
0
id
λ
0
Γ
and
H
(
a
)
⊗
0
1
0
H
(
a
)
⊗
0
H
(1)
H
(
a
)
H
(
a
⊗
1)
id
⊗
0
ι
χ
ρ
0
H
(
ρ
)
Δ
(c) An invertible modification
H
(
b
⊗
a
)
H
(
b
)
⊗
0
H
(
a
)
H
(
a
⊗
b
)
H
(
a
)
⊗
0
H
(
b
)
H
(
β
)
Υ
χ
β
0
χ
(A.26)
These data are required to satisfy a long list of coherence conditions, see [
55
] and
references therein for details.
Our definition of symmetric monoidal transformations differs slightly from [
55
].
The definition we give is tailored to the application in functorial field theories. In
contrast to the definition given in [
55
], we require the appearing modifications to
be invertible.
However, the 2-morphisms corresponding to the underlying natural
transformations are not invertible in our definition, so our definition is also weaker
than the definition given in [
55
].
Definition A.27.
A
natural symmetric monoidal 2-transformation
between sym-
metric monoidal 2-functors
H
,
K
:
B
-→
B
0
consists of a natural 2-transformation
θ
:
H
=
⇒ K
of the underlying 2-functors together with invertible modifications
H
(
a
⊗
b
)
H
(
a
)
⊗
0
H
(
b
)
K
(
a
⊗
b
)
K
(
a
)
⊗
0
H
(
b
)
K
(
a
)
⊗
0
K
(
b
)
θ
χ
H
θ
⊗
0
id
id
⊗
0
θ
Π
χ
K
(A.28)
and
1
0
K
(1)
H
(1)
ι
K
ι
H
M
θ
(A.29)
153

Chapter A: Symmetric monoidal bicategories
which satisfy the following coherence conditions expressed as equalities between 2-
morphisms (omitting tensor product symbols on objects and 1-morphisms to stream-
line the notation):
K
(
a
)
(
K
(
b
)
H
(
c
)
)
K
(
a
)
(
K
(
b
)
K
(
c
)
)
(
(
K
(
a
)
K
(
b
)
)
K
(
c
)
(
K
(
a
)
K
(
b
)
)
H
(
c
)
K
(
ab
)
K
(
c
)
K
(
ab
)
H
(
c
)
(
K
(
a
)
H
(
b
)
)
H
(
c
)
K
(
(
ab
)
c
)
H
(
ab
)
H
(
c
)
(
H
(
a
)
H
(
b
)
)
H
(
c
)
H
(
(
ab
)
c
)
K
(
a
(
bc
)
)
H
(
a
)
(
H
(
b
)
H
(
c
)
)
H
(
c
)
H
(
bc
)
H
(
a
(
bc
))
θ
α
0
χ
K
α
0
θ
χ
K
χ
K
θ
Π
θ
Π
⊗
0
id
K
(
α
)
θ
χ
H
Ω
H
θ
α
θ
χ
H
α
0
H
(
α
)
θ
χ
H
χ
H
θ
k
K
(
a
)
(
K
(
b
)
H
(
c
)
)
K
(
a
)
(
K
(
b
)
K
(
c
)
)
(
K
(
a
)
K
(
b
)
)
K
(
c
)
(
K
(
a
)
K
(
b
)
)
H
(
c
)
K
(
a
)
(
K
(
b
)
K
(
c
)
)
K
(
ab
)
K
(
c
)
(
K
(
a
)
H
(
b
)
)
H
(
c
)
K
(
a
)
K
(
bc
)
K
(
(
ab
)
c
)
K
(
a
)
(
H
(
b
)
H
(
c
)
)
(
H
(
a
)
H
(
b
)
)
H
(
c
)
K
(
a
)
H
(
bc
)
K
(
a
(
bc
)
)
H
(
a
)
(
H
(
b
)
H
(
c
)
)
H
(
a
)
H
(
bc
)
H
(
a
(
bc
)
)
θ
id
⊗
0
Π
α
0
χ
K
χ
K
α
0
α
0
χ
K
χ
K
Ω
K
α
0
?
θ
α
0
χ
K
Π
K
(
α
)
θ
Φ
⊗
0
χ
H
θ
α
0
α
0
?
θ
χ
H
θ
θ
χ
H
θ
(A.30)
154

Chapter A: Symmetric monoidal bicategories
K
(1)
H
(
a
)
K
(1)
K
(
a
)
H
(1)
H
(
a
)
H
(1
a
)
K
(1
a
)
1
0
H
(
a
)
H
(
a
)
K
(
a
)
1
0
K
(
a
)
θ
Π
χ
K
θ
χ
H
θ
H
(
λ
)
K
(
λ
)
ι
H
λ
0
θ
θ
λ
0
θa
λ
0
Γ
H
θ
k
K
(1)
H
(
a
)
K
(1)
K
(
a
)
H
(1)
H
(
a
)
K
(1
a
)
1
0
H
(
a
)
K
(
a
)
1
0
K
(
a
)
θ
Φ
⊗
0
χ
K
θ
M
-
1
⊗
0
id
K
(
λ
)
ι
H
ι
K
θ
Γ
K
λ
0
ι
K
(A.31)
K
(
a
)1
0
K
(
a
)
H
(1)
K
(
a
)
H
(
a
)1
0
H
(
a
)
H
(1)
K
(
a
)
K
(1)
H
(
a
)
H
(
a
1)
K
(
a
1)
K
(
a
)
ι
H
θ
ρ
0
ρ
0
θ
θ
ι
H
Π
χ
H
θ
χ
K
θ
θ
ρ
0
H
(
ρ
)
Δ
-
1
H
θ
ρ
θ
K
(
ρ
)
ι
θ
k
155

Chapter A: Symmetric monoidal bicategories
K
(
a
)1
0
K
(
a
)
H
(1)
K
(
a
)
K
(
a
)
K
(1)
H
(
a
)
K
(
a
1)
K
(
a
)
ι
K
ι
H
θ
ρ
0
K
(
ρ
)
id
id
⊗
0
M
-
1
χ
K
θ
θ
K
(
ρ
)
Δ
-
1
K
(A.32)
and
H
(
b
)
H
(
a
)
H
(
ba
)
H
(
b
)
H
(
a
)
H
(
ab
)
K
(
ba
)
K
(
a
)
K
(
b
)
K
(
ab
)
χ
H
Υ


You've reached the end of your free preview.
Want to read all 183 pages?
- Fall '08
- DRAGER
- Quantum Field Theory, Test, The Land, Gauge theory, quantum field theories