Cooley CG and Cohen AC 1970 Tables of maximum likelihood estimating functions

Cooley cg and cohen ac 1970 tables of maximum

This preview shows page 60 - 62 out of 64 pages.

Cooley, C.G. and Cohen, A.C. (1970). Tables of maximum likelihood estimating functions for singly truncated and singly censored samples from the normal distribution. Technical Report Number 54, Department of Statistics, University of Georgia, Athens. Cox, D.R. (1955). Some Statistical Methods Connected Wtih Series of Events. Journal of the Royal Statistical Society, Series B, 17, 129164. Crow, E.L. (1977). Minimum Variance Unbiased Estimators of Two Lognormal Variates and Two Gamma Variates, Comm, in Stat. Part A-Theory and Methods, 6, 967975. Crow, E.L. , Summers, P.W. , Long, A.B. , Knight, C.A. , Foote, G. B. , and Dye, J.E. (1976). Final Report-National Hail Research Experiment 197274 (Vol. 1, Experimental Results and Overall Summary), National Center for Atmospheric Research, Boulder, CO. Crow, L. (1982). Confidence Interval Procedures for the Weibull Process with Applications to Reliability Growth. Technometrics, 24, 6772. Crow, L.H. (1974). Reliability Analysis for Complex, Repairable Systems. Reliability and Biometry ( F. Proschan and R. J. Serfling , eds.). SIAM, Philadelphia, pp. 379410. 483 Davis, D.J. (1952). An analysis of some failure data. J. Amer. Statist. Ass. 47: 113150. Deemer, W.L. and Votaw, D.F. (1955). Estimation of parameters of truncated or censored exponential distributions. Ann. Math. Statist. 26: 498504. Dumonceaux, R.H. (1969). Statistical inference for location and. scale parameter distributions. Thesis, University of Missouri Rolla, Rolla. Dumonceaux, R.H. and Antie, C.E. (1973). Discrimination between the lognormal and the Weibull distribution. Technometrics 15: 923926. Dumonceaux, R.H. , Antle, C.E. , and Haas, G. (1973). Likelihood ratio test for discrimination between two models with unknown location and scale parameters. Technometrics 15: 1927. Eastman, J. and Bain, L.J. (1973). A property of maximum likelihood estimators in the presence of location-scale nuisance parameters. Commun. Statist. 2(1): 2328. Engelhardt, M.E. (1975). Simple linear estimation of the parameters of the logistic distribution from a complete or censored sample. J. Amer. Statist. Ass. 70: 899902. Engelhardt, M.E. (1975). On simple estimation of the parameters of the Weibull or extreme- value distribution. Technometrics 17: 369374.
Image of page 60
Engelhardt, M.E. and Bain, L.J. (1973). Some complete and censored sampling results for the Weibull or extreme-value distribution. Technometrics 15: 541549. Engelhardt, M.E. and Bain, L.J. (1974). Some results on point estimation for the two-parameter Weibull or extreme-value distribution. Technometrics 16: 4956. Engelhardt, M.E. and Bain, L.J. (1977a). Simplified statistical procedures for the Weibull or extreme-value distributions. Technometrics 19. Engelhardt, M.E. and Bain, L.J. (1977b). Uniformly most powerful unbiased tests on the scale parameter of a gamma distribution with a nuisance shape parameter. Technometrics 19: 7781. Engelhardt, M. and Bain, L.J. (1976). Tolerance limits and confidence limits on reliability for the two-parameter exponential distribution. Technometrics 18. Engelhardt, M. and Bain, L.J. (1982). On Prediction Limits for Samples from a Weibull or Extreme-Value Distribution, Techno-metrics, Vol. 24, 147150.
Image of page 61
Image of page 62

You've reached the end of your free preview.

Want to read all 64 pages?

  • Fall '19
  • Probability distribution, Probability theory, probability density function, CDF, amrna Distribution

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture