4146 13 Brando VE Dekker AG Satellite hyperspectral remote sensing

4146 13 brando ve dekker ag satellite hyperspectral

This preview shows page 21 - 23 out of 26 pages.

2010; 31 :4125-4146 [13] Brando VE, Dekker AG. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing. 2003; 41 :1378-1387 [14] Zhu W, Yu Q. Inversion of chromophoric dissolved organic matter from EO-1 hyperion imagery for turbid estuarine and coastal waters. IEEE Transactions on Geoscience and Remote Sensing. 2013; 51 :3286-3298 [15] Ruiz-Verdú A, Domínguez-Gómez J-A, Peña-Martínez R. Use of CHRIS for monitoring water quality in Rosarito reservoir. In: Proceedings of the Third Chris Proba Workshop. ESA-ESRIN; 2005 [16] Casal G, Kutser T, Domínguez- Gómez J, Sánchez-Carnero N, Freire J. Mapping benthic macroalgal communities in the coastal zone
Image of page 21
21 Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies DOI: using CHRIS-PROBA mode 2 images. Estuarine, Coastal and Shelf Science. 2011; 94 :281-290 [17] Keith DJ, Schaeffer BA, Lunetta RS, Gould RW Jr, Rocha K, Cobb DJ. Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor. International Journal of Remote Sensing. 2014; 35 :2927-2962 [18] Braga F, Giardino C, Bassani C, Matta E, Candiani G, Strömbeck N, et al. Assessing water quality in the northern Adriatic Sea from HICO™ data. Remote Sensing Letters. 2013; 4 :1028-1037 [19] Lim J, Choi M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental Monitoring and Assessment. 2015; 187 :384 [20] Toming K, Kutser T, Laas A, Sepp M, Paavel B, Nõges T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sensing. 2016; 8 :640 [21] Liu H, Li Q, Shi T, Hu S, Wu G, Zhou Q. Application of sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sensing. 2017; 9 :761 [22] O’Reilly JE, Maritorena S, O’brien MC, Siegel DA, Toole D, Menzies D. Chavez FP. In: SeaWiFS postlaunch calibration and validation analyses. part 3. NASA tech. memo. 2000; 206892 (11):3-8 [23] Miller RL, McKee BA. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment. 2004; 93 :259-266 [24] Chen Z, Hu C, Muller-Karger F.  Monitoring turbidity in Tampa Bay using MODIS/Aqua 250 m imagery. Remote Sensing of Environment. 2007; 109 :207-220 [25] Chang N-B, Xuan Z, Yang YJ.  Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sensing of Environment. 2013; 134 :100-110 [26] Shen F, Verhoef W, Zhou Y, Salama MS, Liu X. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuaries and Coasts. 2010; 33 :1420-1429 [27] Harvey ET, Kratzer S, Philipson P.  Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sensing of Environment. 2015; 158 :417-430 [28] Kim YH, Im J, Ha HK, Choi J-K, Ha S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GIScience & Remote Sensing. 2014; 51 :158-174 [29] Wang M, Son S. VIIRS-derived
Image of page 22
Image of page 23

You've reached the end of your free preview.

Want to read all 26 pages?

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture