# Class xii ncert maths chapter 07 integrals 7integrals

• 167

Course Hero uses AI to attempt to automatically extract content from documents to surface to you and others so you can study better, e.g., in search results, to enrich docs, and more. This preview shows page 154 - 159 out of 167 pages.

Class XIINCERTMathsChapter-07 - Integrals7.Integrals 222020114sec334 1tan3xIxdxx 222022sec... 16314tanxIdxx Consider,22202sec14tanxdxxLet 2 tanx = t2sec2xdx = dtWhen x = 0, t = 0 and when x =2, t =222200102sec14tan1tanxdtdxxtt 11tantan02 Therefore, from (1), we obtain2632366I Question 28:36sincossin2xxdxxSolution 28:Let36sincossin2xxIdxx36sincossin2xxIdxx 36sincos1 12sincosxxIdxx   3226sincos1sincos2sincosxxIdxxxxx326sincos1sincosLet sincossincosxx dxIxxxxtxx dxdt151
Class XIINCERTMathsChapter-07 - Integrals7.Integrals3 1213221331when,and when x =,62321xttdtIt3 1213221dtIt222a-a0111As, therefore,is an even function.1112atttfx dxfx dx It is known that if f(x) is an even function, then3 12203 1120212sindtItt1312sin2= 2(π/12) = π/6Question 29:101dxxxSolution 29:Let101dxIxx101111xxIdxxxxx101100111xxdxxxxdxxdx  1123320023221332221133xx    23223152
Class XIINCERTMathsChapter-07 - Integrals7.Integrals2.2234 23Question 30:40sincos916sin2xxdxxSolution 30:Let I =40sincos916sin2xxdxxAlso let sin xcos x = t(cos x + sinx) dx = dtWhen x = 0, t = - 1 and when x =4, t = 022222sincossincos2sincosxxtxxt221sin2sin21xtxt  021021916 191616dtItdtt  0022211012516541154log42 554dtdttttt 11log 1log4091log940Question 31:120sin2 tansinxx dxSolution 31:Let112200sin2 tansin2sincostansinIxx dxxxx dx153
Class XIINCERTMathsChapter-07 - Integrals7.IntegralsAlso, let sin x = tcos x dx = dtWhen x = 0, t = 0 and when x =2, t = 11102tan( )Itt dt… (1)Consider111.tantan.tandttdtttdtttdtdtdt221221221tan..212tan111221tttdtttttdtt 21221112111100tan1111.2221tan11.tan222tan1.tantan222ttdtdtttttttttttdtt11244 1112242From equation (1), we obtain121422IQuestion 32:0tansectanxxdxxxSolution 32:Let 0tan... 1sectanxxdxxx 000tansectanaaxxIdxfx dxfax dxxx0tansectanxxIdxxx 0tan... 2sectanxxIdxxxAdding (1) and (2), we obtain154
Class XIINCERTMathsChapter-07 - Integrals7.Integrals0tan2sectanxIdxxx0sincos21sincoscosxxIdxxxx000sin1121sin121.1sinxIdxxIdxdxx  2002201sin2cos2sectansecxIxdxxIxxx dx2022tansec2tansectan0sec0IxxI222010122II 2222II Question 33:41123xxxdxSolution 33:LetI=41123xxxdx444111123Ixdxxdxxdx 123... 1IIII444123111411where,1,2,311014Ixdx Ixdx and IxdxIxdxxforx4114211(1)2IxdxxIx155

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 167 pages?

Course Hero member to access this document

Term
Summer
Professor
N/A
Tags
Logarithm, constant term, function sin 2x