BIOLOGY

# 32 distribución de variables aleatorias discretas x

• Notes
• 45

This preview shows pages 29–33. Sign up to view the full content.

3.2 Distribución de variables aleatorias discretas X: variable aleatoria x: son los posibles valores que puede tomar X. Si x es un valor de una variable aleatoria X, entonces la probabilidad de que X tome el valor x se denotará por P(X=x); por ejemplo, para x=2, se escribirá P(X=2).

This preview has intentionally blurred sections. Sign up to view the full version.

En general, los requerimientos para una función de probabilidad discreta son: Es decir, el valor de la probabilidad siempre está entre 0 y 1 y la suma de las probabilidades debe ser 1. Ejemplo Considérense los siguientes valores de X Se pueden verificar fácilmente las siguientes propiedades: 1. La suma de probabilidades es 1. 2. Las probabilidades están entre 0 y 1 inclusive. Por lo que se concluye que ésta es una función de probabilidades: En cambio

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.
• Spring '16
• Andy Anderson
• Human Anatomy, Experimento, Media aritmética, Variable aleatoria, Distribución binomial

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern