Fluoxetine is a substance that inhibits the reuptake

Info icon This preview shows pages 26–28. Sign up to view the full content.

View Full Document Right Arrow Icon
Fluoxetine is a substance that inhibits the reuptake of serotonin, a neurotransmitter that acts mainly in the central nervous system. By inhibiting the reuptake of the neurotransmitter, the drug increases its availability in the synaptic cleft, thus improving neuronal transmission. 54. What is the neuromuscular synapse?
Image of page 26

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
The neuromuscular synapse is the structure through which a neural impulse passes from the axon of a motor neuron to a muscle cell. This structure is also known as the neuromuscular junction, or motor end plate. Like with the nervous synapse, the axonal terminal membrane releases the neurotransmitter acetylcholine into the cleft between the two cells. Acetylcholine binds to specific receptors of the muscle membrane, dependent sodium channels then open and the depolarization of the muscle membrane begins. The impulse is then transmitted to the sarcoplasmic reticulum, which releases calcium ions into the sarcomeres of the myofibrils, thus triggering the contraction. The Nervous System Review - Image Diversity: the neuromuscular synapse Sensory Receptors 55. How does the nervous system get information about the external environment, organs and tissues? Information about the conditions of external and internal environments, such as temperature, pressure, touch, spatial position, pH, metabolite levels (oxygen, carbon dioxide, etc.), light, sounds, etc., are collected by specific neural structures (different types for each type of information) called sensory receptors. Sensory receptors are distributed throughout tissues according to their specific roles. The receptors obtain information and transmit it through their own axons or through dendrites of neurons connected to them. The information
Image of page 27
reaches the central nervous system, which interprets it and uses it to control and regulate the body. 56. What are sensory receptors? Sensory receptors are structures specialized in the acquisition of information, such as temperature, mechanical pressure, pH, chemical environment and luminosity, which transmit them to the central nervous system. Sensory receptors may be specialized cells, such as the photoreceptors of the retina, or specialized interstitial structures, such as the vibration receptors of the skin. In this last case, they transmit information to the dendrites of the sensory neurons connected to them. There also exist sensory receptors that are specialized terminations of neuronal dendrites (such as olfactory receptors). The Nervous System Review -Image Diversity: sensory receptors 57. According to the stimuli they obtain, how are sensory receptors classified? Sensory receptors are classified according to the stimuli they obtain: mechanoreceptors are stimulated by pressure (touch or sound); chemoreceptors respond to chemical stimuli (olfactory, taste, pH, metabolite concentration, etc.); thermoreceptors are sensitive to temperature changes; photoreceptors are stimulated by light; nocireceptors send pain information; and proprioceptors are sensitive to the spatial position of muscles and joints (they generate information for the balance of the body).
Image of page 28
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern