[B._Beckhoff,_et_al.]_Handbook_of_Practical_X-Ray_(b-ok.org).pdf

Fundamental parameter equations for bulk materials

Info icon This preview shows pages 7–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Fundamental Parameter Equations for Bulk Materials . . . . . . 312 5.2.2 Direct Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 5.2.3 Indirect Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 5.2.4 Use of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
X Contents 5.3 Matrix Correction Methods and Influence Coefficients . . . . . . . . . . . . 327 5.3.1 The Nature of Influence Coefficients M. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 5.3.2 The Lachance–Traill Algorithm J.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 5.3.3 The Claisse–Quintin Algorithm J.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 5.3.4 The COLA Algorithm J.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 5.3.5 The de Jongh Algorithm B.A.R. Vrebos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 5.3.6 The Broll–Tertian Algorithm K.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 5.3.7 The Japanese Industrial Standard Method N. Kawahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 5.3.8 The Fundamental Algorithm R.M. Rousseau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 5.4 Compensation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 B.A.R. Vrebos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 5.4.1 Internal Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 5.4.2 Standard Addition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 5.4.3 Dilution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 5.4.4 Scattered Radiation – Compton Scatter . . . . . . . . . . . . . . . . . . 363 5.5 Thin and Layered Samples P.N. Brouwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 5.5.1 Direct Excitation by Polychromatic Sources . . . . . . . . . . . . . . . 369 5.5.2 Indirect Excitation by Polychromatic Sources . . . . . . . . . . . . . 371 5.5.3 Back-Calculation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 5.5.4 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 5.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 5.6 Complex Excitation Effects and Light Elements N. Kawahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 5.6.1 Indirect Excitation Processes in the Low Energy Region . . . . 379 5.6.2 Secondary Excitation by Electrons . . . . . . . . . . . . . . . . . . . . . . . 379 5.6.3 Cascade Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 5.7 Standardless Methods K.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 5.7.2 Semiquantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 5.7.3 Requirements for a Standardless Method . . . . . . . . . . . . . . . . . 385 5.8 Monte Carlo Methods M. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 5.9 Errors and Reliability Issues M. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 5.9.1 Mathematical Treatment of Statistical Errors . . . . . . . . . . . . . 397
Image of page 8
Contents XI 5.9.2 Counting Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 5.9.3 Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 5.10 Standardized Methods K.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 5.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 5.10.2 General Features of Standardized Methods . . . . . . . . . . . . . . . 400 5.10.3 Standardized Methods Versus Universal Calibrations and Standardless Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 5.10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Symbols and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 6 Specimen Preparation J. Injuk, R. Van Grieken, A. Blank, L. Eksperiandova and V. Buhrke . . 411 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 6.2 Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 6.2.1 Direct Analysis of Liquids and Solutions . . . . . . . . . . . . . . . . . . 412 6.2.2 Conversion of Liquids into Quasi-Solid Specimens . . . . . . . . . 413 6.2.3 Conversion of Liquids into Organic Glassy Polymer Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 6.2.4 Conversion of Liquids into Thin Films . . . . . . . . . . . . . . . . . . . 414 6.2.5 Analysis of Solutions after Preconcentration of Microimpurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 6.3 Solid Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 6.3.1 Metallic Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 6.3.2 Powder Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 6.3.3 Fused Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 6.4 Biological Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 6.5 Aerosol and Dust Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 6.6 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 7 Methodological Developments and Applications 7.1 Micro X-Ray Fluorescence Spectroscopy B. Kanngießer and M. Haschke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 7.1.2 General Description of Micro-XRF Laboratory Units . . . . . . . 434 7.1.3 Applications of Micro X-Ray Fluorescence Analysis . . . . . . . . 442 7.1.4 3D Micro X-Ray Fluorescence Spectroscopy . . . . . . . . . . . . . . 462 7.2 Micro-XRF with Synchrotron Radiation A. Simionovici and P. Chevallier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 7.2.2 The General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 7.2.3 Quantitative Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 7.2.4 Elemental Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 7.2.5 Examples of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
XII Contents 7.3 Total-Reflection X-Ray Fluorescence (TXRF) Wafer Analysis C. Streli, P. Wobrauschek, L. Fabry, S. Pahlke, F. Comin, R. Barrett, P. Pianetta, K. L¨uning and B. Beckhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 7.3.2
Image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern