# The graph was ohmic because it follows ohms law and

• Lab Report
• 13
• 100% (2) 2 out of 2 people found this document helpful

This preview shows page 7 - 9 out of 13 pages.

slope was linear. The graph was ohmic because it follows ohm’s law and that is proven when R=V/I. The code calculated measurement for 360 Ohms, and the calculated resistance using the slope was 353.23 which shows the graph was accurate. Part two of the lab demonstrated that the light bulb had an internal resistance, and the higher the voltage the lower the resistance. The reason for this is that the energy is transferred into heat/light and for that to happen the resistance needs to be lower. The graph was divided into two parts, and the slope
for the first couple of point was to match the internal resistance of the light bulb. However the resistance form the graph was 9.67 Ohms and the measured resistance of the light bulb was 5.6 Ohms which is a discrepancy. The reason for this discrepancy is that we used mA’s to measure the current compared to using Amps. Although the behavior of the graph was accurate as the voltage increased the resistance started to decrease. The same method and concept for measure the resistance was used from part one of the lab. This graph is nonohmic because it does not follow the ohm’s law and the behavior of this graph is not linear. Part three of the lab showed the correlation between resistivity and the length and cross section of an object. The object that was used in the lab is a graphite rod, and the measurements started at he ends of the rod and were moved closer together reaching the center. The resistance at .061m was 18.295 ohms and when the clips were moved closer together at .009m the resistance was 4.659 Ohms. Resistivity is dependent on the length and cross section of an object as the graph shows. The slope in part there is the resistivity of the graphite object, and by using the object area it was possible to isolate the resistivity.
• • • 