100%(8)8 out of 8 people found this document helpful
This preview shows page 13 - 18 out of 26 pages.
12.Given⃗u=(−3,7,2),⃗v=(6,2,1), and⃗w=(−2,3,8),verify the following arithmetic propertiesof vectors.(12 marks: 4 marks each)w
Get answer to your question and much more
The cross product is⃗u×(⃗v+⃗w)=(53,35,−43).Right side:⃗u×⃗v+⃗u×⃗w¿(−3,7,2)×(6,2,1)+(−3,7,2)×(−2,3,8)¿(3,15,−48)+(50,20,5)¿(53,35,−43)The cross product is⃗u×⃗v+⃗u×⃗w=(53,35,−43).Since⃗u×(⃗v+⃗w)=(53,35,−43)and⃗u×⃗v+⃗u×⃗w=(53,35,−43), we can conclude that⃗u×(⃗v+⃗w)=⃗u×⃗v+⃗u×⃗wand the distributive law holds true for cross products.
b)⃗u∙(⃗v+⃗w)=⃗u∙⃗v+⃗u∙⃗wLeft side:⃗u∙(⃗v+⃗w)¿(−3,7,2)∙[(6,2,1)+(−2,3,8)]¿(−3,7,2)∙(4,5,9)¿(−3) (4)+(7) (5)+(2)(9)¿−12+35+18¿41Right side:⃗u∙⃗v+⃗u∙⃗w¿(−3,7,2)∙(6,2,1)+(−3,7,2)∙(−2,3,8)¿(−3) (6)+(7) (2)+(2) (1)+(−3) (−2)+(7) (3)+(2)(8)¿−18+14+2+6+21+16¿41Therefore,⃗u∙(⃗v+⃗w)=⃗u∙⃗v+⃗u∙⃗wand the distributive law applies to the dot product of two vectors.c)(⃗u+⃗v)∙(⃗u+⃗v)=|⃗u|2+|⃗v|2+2(⃗u∙⃗v)Left side:(⃗u+⃗v)∙(⃗u+⃗v)¿[(−3,7,2)+(6,2,1)]∙[(−3,7,2)+(6,2,1)]¿(3,9,3)∙(3,9,3)
¿(3) (3)+(9) (9)+(3)(3)¿9+81+9¿99Right side:|⃗u|2+|⃗v|2+2(⃗u∙⃗v)¿(√(−3)2+(7)2+(2)2)2+(√(6)2+(2)2+(1)2)2+2(−3,7,2)∙(6,2,1)¿62+41+2((−3) (6)+(7) (2)+(2) (1))¿103+2(−2)¿99Therefore,(⃗u+⃗v)∙(⃗u+⃗v)=|⃗u|2+|⃗v|2+2(⃗u∙⃗v).5/5 marks13.Describe how the dot product can be used to determine whether two vectors are perpendicular. Createa question with vectors in 3-space to illustrate this property. Be sure to solve the question as well.(5 marks)is:z2
Get answer to your question and much more
⃗u∙⃗v=x1x2+y1y2+z1z2=0For example, find the dot product of the following pair of vectors.Determine whether vectors⃗u=(1,9,3)and⃗v=(6,2,−8)are perpendicular:Find the dot product using the Cartesian formula:⃗p∙⃗q=(1) (6)+(9) (2)+(3)(−8)¿6+18−24¿0The dot product is 0, so the vectors⃗p=(1,9,3)and⃗q=(6,2,−8)are perpendicular.Task 4: Application questions7/7 marks